
 November 2013 YFS

PSoC® Board Support Package for
CY8CKIT-050 (PSoC 5LP Developers Kit)

v1.1

Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810

Phone (Intl): 408.943.2600

http://www.cypress.com

BSP For CY8CKIT-050 v1.1

2 of 49 November 2013

Copyrights

Copyright © 2013 Cypress Semiconductor Corporation. All rights reserved.

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Designer is a

trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced

herein are the property of their respective owners.

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license

under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system

conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips

Semiconductors has a new trade name, NXP Semiconductors.

The information in this document is subject to change without notice and should not be construed as a

commitment by Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for

any errors that may appear in this document. No part of this document may be copied, or reproduced for

commercial use, in any form or by any means without the prior written consent of Cypress.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS

MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to

the materials described herein. Cypress does not assume any liability arising out of the application or use of any

product or circuit described herein. Cypress does not authorize its products for use as critical components in life-

support systems where a malfunction or failure may reasonably be expected to result in significant injury to the

user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer

assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress

believes that its family of PSoC products is one of the most secure families of its kind on the market today,

regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code

protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither

Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection

does not mean that we are guaranteeing the product as “unbreakable.”

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is

constantly evolving. We at Cypress are committed to continuously improving the code protection features of our

products.

v1.1 BSP For CY8CKIT-050

 November 2013 3 of 49

Table of Contents

Chapters

Table of Contents .. 3

Chapters .. 3

Tables .. 4

Figures... 4

Device Family Overview .. 6

Resources ... 8

System Settings .. 9

Configuration ... 9

Debug .. 9

Operating Conditions ... 9

Pins ..11

Device Pin Functions ..12

Accessing Unused Pins ..15

Using the cy_pins Component ..15

Clocks ..17

System Clocks ..18

Local and Design Wide Clocks ...18

Using the cy_clock Component ...19

Interrupts ..21

Global Interrupt Control ...21

Using the cy_isr Component ...22

DMA ...23

Design Contents ...24

Switches ...24

LEDs ...25

Communications ...29

Timer ..33

Analog-Digital Converters (ADC) ..35

Digital-Analog Converter (DAC) ..39

Comparators ...41

CapSense ...43

LCD ..46

Other Resources ..48

Revision History ...49

BSP For CY8CKIT-050 v1.1

4 of 49 November 2013

Tables

Table 1: Device Characteristics ... 7

Table 2: Device Resources ... 8

Table 3: Configuration Settings ... 9

Table 4: Debug Settings .. 9

Table 5: Operating Conditions ... 9

Table 6: Device Pins ..12

Table 7: Per-Pin APIs (for [unused] pins)..15

Table 8: cy_pins APIs ...15

Table 9: System Clocks ..18

Table 10: Local Clocks ...18

Table 11: cy_clock APIs ...19

Table 12: Interrupts ..21

Table 13: cy_isr APIs..22

Table 14: SWn_Debouncer Parameters ...24

Table 15: LEDn_Control Parameters ..25

Table 16: LEDn_Control APIs ...26

Table 17: PWM_n Parameters ...26

Table 18: I2C Parameters ..29

Table 19: I2C APIs ...30

Table 20: I2C Sleep/Wake APIs ...30

Table 21: UART Parameters ..30

Table 22: UART APIs ...31

Table 23: Timer_1MHz Parameters ..33

Table 24: Timer_1MHz APIs ...33

Table 25: ADC_SAR_n Parameters ...36

Table 26: ADC_SAR_n APIs ..36

Table 27: ADC_DelSig Parameters ..37

Table 28: ADC_DelSig APIs ...37

Table 29: DAC Parameters...39

Table 30: DAC APIs ...39

Table 31: Comp_n Parameters ...41

Table 32: Comp_n APIs ...42

Table 33: Comp_n_VRef Parameters ...42

Table 34: Comp_n_VRef APIs ..42

Table 35: General APIs ..43

Table 36:Scanning APIs ...44

Table 37: High-Level APIs ..44

Table 38: LCD APIs ..46

Figures

Figure 1: CY8C58LP Device Family Block Diagram .. 6

Figure 2: Device Pin Layout..11

Figure 3: System Clock Configuration ..17

Figure 4: Local and Design Wide Clock Configuration ..18

Figure 5: Switches ..24

Figure 6: LEDs ...25

Figure 7: PWM_n APIs ...26

v1.1 BSP For CY8CKIT-050

 November 2013 5 of 49

Figure 8: I2C ..29

Figure 9: UART ..29

Figure 10: MHz Timer ...33

Figure 11: SAR ADC 1 ...35

Figure 12: SAR ADC 2 ...35

Figure 13: Delta-Sigma ADC ..35

Figure 14: Voltage DAC ..39

Figure 15: Comparators ..41

Figure 16: CapSense..43

Figure 17: LCD ...46

BSP For CY8CKIT-050 v1.1

6 of 49 November 2013

Device Family Overview

The Cypress PSoC 5LP is a family of 32-bit devices with the following characteristics.

 High-performance 32-bit ARM Cortex-M3 core with a nested vectored interrupt controller
(NVIC) and a high-performance DMA controller

 Digital system that includes configurable Universal Digital Blocks (UDBs) and specific
function peripherals, such as USB, I2C and SPI

 Analog subsystem that includes 20-bit Delta Sigma converters (ADC), SAR ADCs, 8-bit
DACs that can be configured for 12-bit operation, comparators, op amps and
configurable switched capacitor (SC) and continuous time (CT) blocks to create PGAs,
TIAs, mixers, and more

 Several types of memory elements, including SRAM, flash, and EEPROM

 Programming and debug system through Serial Wire Debug (SWD), and Single Wire
Viewer (SWV)

 Flexible routing to all pins

Figure 1 shows the major components of a typical CY8C58LP device. For details on all the

systems listed above, please refer to the PSoC 5LP Technical Reference Manual.

Figure 1: CY8C58LP Device Family Block Diagram

http://www.cypress.com/go/CY8C58LP
http://www.cypress.com/go/psoc5_trm

v1.1 BSP For CY8CKIT-050

 November 2013 7 of 49

Table 1 lists the key characteristics of this device.

Table 1: Device Characteristics

Name Value

Device CY8C5868AXI-LP035

Architecture PSoC 5LP

Family CY8C58LP

CPU speed (MHz) 67

Flash size (kBytes) 256

SRAM size (kBytes) 64

EEPROM size (Bytes) 2048

Trace Buffer (kBytes) 0

Vdd range (V) 1.71 to 5.5

Automotive qualified No (Industrial Grade Only)

Temp range (Celsius) -40 to 85

JTAG ID 0x2E123069

NOTE: The CPU speed noted above is the maximum available speed. The CPU is clocked

by BUS_CLK, listed in the System Clocks section below.

BSP For CY8CKIT-050 v1.1

8 of 49 November 2013

Resources
Table 2 lists the device resources that this design uses.

Table 2: Device Resources

Resource Name In Use Total Available

Digital domain clock dividers 7 (87.5%) 8

Analog domain clock dividers 3 (75.0%) 4

Pins 34 (47.2%) 72

UDB Macrocells 52 (27.1%) 192

UDB Unique Pterms 89 (23.2%) 384

UDB Datapath Cells 10 (41.7%) 24

UDB Status Cells 5 (20.8%) 24

UDB Control Cells 6 (25.0%) 24

DMA Channels 0 (0.0%) 24

Interrupts 19 (59.4%) 32

DSM Fixed Blocks 1 (100.0%) 1

VIDAC Fixed Blocks 4 (100.0%) 4

SC Fixed Blocks 0 (0.0%) 4

Comparator Fixed Blocks 4 (100.0%) 4

Opamp Fixed Blocks 0 (0.0%) 4

CapSense Buffers 1 (50.0%) 2

CAN Fixed Blocks 0 (0.0%) 1

Decimator Fixed Blocks 1 (100.0%) 1

I2C Fixed Blocks 1 (100.0%) 1

Timer Fixed Blocks 2 (50.0%) 4

DFB Fixed Blocks 0 (0.0%) 1

USB Fixed Blocks 0 (0.0%) 1

LCD Fixed Blocks 0 (0.0%) 1

EMIF Fixed Blocks 0 (0.0%) 1

LPF Fixed Blocks 0 (0.0%) 2

SAR Fixed Blocks 2 (100.0%) 2

v1.1 BSP For CY8CKIT-050

 November 2013 9 of 49

System Settings
The following tables show system settings as configured in PSoC Creator.

Configuration

Table 3: Configuration Settings

Name Value

Device Configuration Mode Compressed

Enable Error Correcting Code (ECC) False

Store Configuration Data in ECC Memory True

Instruction Cache Enabled True

Enable Fast IMO During Startup True

Unused Bonded IO Allow but warn

Heap Size (bytes) 0x1000

Stack Size (bytes) 0x4000

Include CMSIS Core Peripheral Library True

Debug

Table 4: Debug Settings

Name Value

Debug Select SWD+SWV

Enable Device Protection False

Embedded Trace (ETM) False

Use Optional XRES False

Operating Conditions

Table 5: Operating Conditions

Name Value

Vddd (V) 3.3

Vdda (V) 3.3

Vddio0 (V) 3.3

Vddio1 (V) 3.3

Vddio2 (V) 3.3

Vddio3 (V) 3.3

Variable Vdda False

BSP For CY8CKIT-050 v1.1

10 of 49 November 2013

v1.1 BSP For CY8CKIT-050

 November 2013 11 of 49

Pins
Figure 2 shows the pin layout of this device.

Figure 2: Device Pin Layout

BSP For CY8CKIT-050 v1.1

12 of 49 November 2013

Device Pin Functions

Table 6 contains information about the pins on this device in device pin order. (No-

connection ["n/c"] pins have been omitted.)

Table 6: Device Pins

Pin Port Name Type Drive Mode Reset State

1 P2[5] LCD:LCDPort[5] Strong HiZ Analog Unb

2 P2[6] LCD:LCDPort[6] Strong HiZ Analog Unb

3 P2[7] GPIO [unused] HiZ Analog Unb

4 P12[4] P12_5_4[0] Digital I/O OD, DL HiZ Analog Unb

5 P12[5] P12_5_4[1] Digital I/O OD, DL HiZ Analog Unb

6 P6[4] CapSense:CmodCH0 Analog HiZ Analog HiZ Analog Unb

7 P6[5] P6_5 Analog HiZ Analog HiZ Analog Unb

8 P6[6] P6_6 Digital In HiZ Analog HiZ Analog Unb

9 P6[7] GPIO [unused] HiZ Analog Unb

10 Vssb Vssb Power

11 Ind Ind Power

12 Vb Vb Power

13 Vbat Vbat Power

14 Vssd Vssd Power

15 XRES_N XRES_N Power

16 P5[0] CapSense:PortCH0[2] Analog OD, DL HiZ Analog Unb

17 P5[1] CapSense:PortCH0[3] Analog OD, DL HiZ Analog Unb

18 P5[2] CapSense:PortCH0[4] Analog OD, DL HiZ Analog Unb

19 P5[3] CapSense:PortCH0[5] Analog OD, DL HiZ Analog Unb

20 P1[0] GPIO [unused] HiZ Analog Unb

21 P1[1] GPIO [unused] HiZ Analog Unb

22 P1[2] GPIO [unused] HiZ Analog Unb

23 P1[3] GPIO [unused] HiZ Analog Unb

24 P1[4] GPIO [unused] HiZ Analog Unb

25 P1[5] GPIO [unused] HiZ Analog Unb

26 Vio1 Vio1 Power

27 P1[6] GPIO [unused] HiZ Analog Unb

28 P1[7] GPIO [unused] HiZ Analog Unb

29 P12[6] P12_6 Digital Out Strong HiZ Analog Unb

30 P12[7] P12_7 Digital Out Strong HiZ Analog Unb

31 P5[4] CapSense:PortCH0[6] Analog OD, DL HiZ Analog Unb

32 P5[5] CapSense:PortCH0[1] Analog OD, DL HiZ Analog Unb

33 P5[6] CapSense:PortCH0[0] Analog OD, DL HiZ Analog Unb

v1.1 BSP For CY8CKIT-050

 November 2013 13 of 49

Pin Port Name Type Drive Mode Reset State

34 P5[7] GPIO [unused] HiZ Analog Unb

35 P15[6] USB [unused] HiZ Analog Unb

36 P15[7] USB [unused] HiZ Analog Unb

37 Vddd Vddd Power

38 Vssd Vssd Power

39 Vccd Vccd Power

42 P15[0] GPIO [unused] HiZ Analog Unb

43 P15[1] GPIO [unused] HiZ Analog Unb

44 P3[0] GPIO [unused] HiZ Analog Unb

45 P3[1] GPIO [unused] HiZ Analog Unb

46 P3[2] GPIO [unused] HiZ Analog Unb

47 P3[3] GPIO [unused] HiZ Analog Unb

48 P3[4] GPIO [unused] HiZ Analog Unb

49 P3[5] GPIO [unused] HiZ Analog Unb

50 Vio3 Vio3 Power

51 P3[6] GPIO [unused] HiZ Analog Unb

52 P3[7] GPIO [unused] HiZ Analog Unb

53 P12[0] SIO [unused] HiZ Analog Unb

54 P12[1] SIO [unused] HiZ Analog Unb

55 P15[2] GPIO [unused] HiZ Analog Unb

56 P15[3] GPIO [unused] HiZ Analog Unb

63 Vcca Vcca Power

64 Vssa Vssa Power

65 Vdda Vdda Power

66 Vssd Vssd Power

67 P12[2] SIO [unused] HiZ Analog Unb

68 P12[3] SIO [unused] HiZ Analog Unb

69 P4[0] GPIO [unused] HiZ Analog Unb

70 P4[1] GPIO [unused] HiZ Analog Unb

71 P0[0] P0_0 Analog HiZ Analog HiZ Analog Unb

72 P0[1] P0_1 Analog HiZ Analog HiZ Analog Unb

73 P0[2] P0_2 Analog HiZ Analog HiZ Analog Unb

74 P0[3] P0_3 Analog HiZ Analog HiZ Analog Unb

75 Vio0 Vio0 Power

76 P0[4] P0_4 Analog HiZ Analog HiZ Analog Unb

77 P0[5] GPIO [unused] HiZ Analog Unb

78 P0[6] GPIO [unused] HiZ Analog Unb

79 P0[7] GPIO [unused] HiZ Analog Unb

BSP For CY8CKIT-050 v1.1

14 of 49 November 2013

Pin Port Name Type Drive Mode Reset State

80 P4[2] GPIO [unused] HiZ Analog Unb

81 P4[3] GPIO [unused] HiZ Analog Unb

82 P4[4] GPIO [unused] HiZ Analog Unb

83 P4[5] GPIO [unused] HiZ Analog Unb

84 P4[6] GPIO [unused] HiZ Analog Unb

85 P4[7] GPIO [unused] HiZ Analog Unb

86 Vccd Vccd Power

87 Vssd Vssd Power

88 Vddd Vddd Power

89 P6[0] P6_0 Digital Out Strong HiZ Analog Unb

90 P6[1] P6_1 Digital In Res pull up HiZ Analog Unb

91 P6[2] P6_2 Digital Out Strong HiZ Analog Unb

92 P6[3] P6_3 Digital Out Strong HiZ Analog Unb

93 P15[4] GPIO [unused] HiZ Analog Unb

94 P15[5] P15_5 Digital In Res pull up HiZ Analog Unb

95 P2[0] LCD:LCDPort[0] Strong HiZ Analog Unb

96 P2[1] LCD:LCDPort[1] Strong HiZ Analog Unb

97 P2[2] LCD:LCDPort[2] Strong HiZ Analog Unb

98 P2[3] LCD:LCDPort[3] Strong HiZ Analog Unb

99 P2[4] LCD:LCDPort[4] Strong HiZ Analog Unb

100 Vio2 Vio2 Power

Abbreviations used in Table 6 have the following meanings:

 GPIO = General Purpose IO

 SIO = Special IO

 Digital In = Digital input

 Res pull up = Resistive pull up

 Res pull dn = Resistive pull down

 Res pull up/dn = Resistive pull up/down

 Digital Out = Digital output

 Strong = Strong drive (digital output)

 Digital I/O = Bidirectional (I2C)

 HiZ analog = High impedance analog

 HiZ Analog Unb = Hi-Z Analog - unbuffered

 OD, DL = Open drain, drives low

 OD, DH = Open drain, drives high

For more information on reading, writing and configuring pins please refer to:

 Pins chapter in the System Reference Guide (CyPins API routines)

http://www.cypress.com/go/comp_cy_boot

v1.1 BSP For CY8CKIT-050

 November 2013 15 of 49

 Programming Application Interface section in the cy_pins component datasheet

Accessing Unused Pins

In Table 6, several pins are marked as [unused]. These pins have no specific purpose in the

design but can be accessed from firmware by using a library of pin macros is provided in the

cypins.h file. These macros all make use of the port pin configuration register that is available

for every pin on the PSoC 5LP device. The address of that register is provided in the

cydevice_trm.h file. Each of these pin configuration registers is named:

 CYREG_PRTx_PCy

where x is the port number and y is the pin number within the port.

Table 7: Per-Pin APIs (for [unused] pins)

Function Description

CyPins_ReadPin() Reads the current value on the pin (pin state, PS)

CyPins_SetPin() Set the output value for the pin (data register, DR) to a

logic high. Note that this only has an effect for pins

configured as software pins that are not driven by

hardware.

CyPins_ClearPin() Clear the output value for the pin (data register, DR) to a

logic low. Note that this only has an effect for pins

configured as software pins that are not driven by

hardware.

CyPins_SetPinDriveMode() Sets the drive mode for the pin (DM).

CyPins_ReadPinDriveMode() Reads the drive mode for the pin (DM).

Using the cy_pins Component

Two of the pins listed in Table 6 can be managed from software; the pins for the two

switches, SW2 and SW3.

However, in most cases the pins are associated with a specific hardware block such as

CapSense, the LCD, or a communications or analog component. It is not recommended to

change the behavior of these pins from firmware or to attempt to read/write them.

Important: Note that the string “Pinname” in the following APIs should be replaced with the

name of the cy_pins component listed in Table 6, e.g. P6_1_Read().

Table 8: cy_pins APIs

Function Description

Pinname _Read() Reads the physical port and returns the current value for

all pins in the component

Pinname _Write() Writes the value to the component pins while protecting

other pins in the physical port if shared by multiple Pins

components

Pinname _ReadDataReg() Reads the current value of the port’s data output register

and returns the current value for all pins in the component

http://www.cypress.com/go/comp_cy_pins

BSP For CY8CKIT-050 v1.1

16 of 49 November 2013

Function Description

Pinname _SetDriveMode() Sets the drive mode for each of the Pins component’s pins

Pinname _ClearInterrupt() Clears any active interrupts on the port into which the

component is mapped. Returns value of interrupt status

register

v1.1 BSP For CY8CKIT-050

 November 2013 17 of 49

Clocks
The clock system includes these clock resources:

 Four internal clock sources increase system integration:

o 3 to 48 MHz Internal Main Oscillator (IMO) ±5% at 3 MHz

o 1 kHz, 33 kHz, 100 kHz Internal Low Speed Oscillator (ILO) outputs

o USB Clock Domain, sourced from IMO, MHz External Crystal Oscillator (MHzECO),
and Digital System Interconnect (DSI)

o 24 to 67 MHz fractional Phase-Locked Loop (PLL) sourced from IMO, MHzECO, and
DSI

 Clock generated using a DSI signal from an external I/O pin or other logic

 Two external clock sources provide high precision clocks:

o 4 to 25 MHz External Crystal Oscillator (MHzECO)

o 32.768 kHz External Crystal Oscillator (kHzECO) for Real Time Clock (RTC)

 Dedicated 16-bit divider for bus clock

 Eight individually sourced 16-bit clock dividers for the digital system peripherals

 Four individually sourced 16-bit clock dividers with skew for the analog system
peripherals

 IMO has a USB mode that synchronizes to USB host traffic, requiring no external crystal
for USB. (USB equipped parts only)

Figure 3: System Clock Configuration

BSP For CY8CKIT-050 v1.1

18 of 49 November 2013

System Clocks

Table 9 lists the system clocks used in this design.

Table 9: System Clocks

Name Domain Source Freq

(MHz)

Accuracy

(%)

Start at

Reset

USB_CLK DIGITAL IMO N/A ±0 False

BUS_CLK DIGITAL MASTER_CLK 48 ±1 True

MASTER_CLK DIGITAL PLL_OUT 48 ±1 True

Digital Signal DIGITAL N/A ±0 False

XTAL 32kHz DIGITAL N/A ±0 False

XTAL DIGITAL N/A ±0 False

ILO DIGITAL 0.001 -50 / +100 True

PLL_OUT DIGITAL IMO 48 ±1 True

IMO DIGITAL 3 ±1 True

Local and Design Wide Clocks

Local clocks drive individual analog and digital blocks. Design wide clocks are a user-defined

optimization, where two or more analog or digital blocks that share a common clock profile

(frequency, etc) can be driven from the same clock divider output source.

Figure 4: Local and Design Wide Clock Configuration

Table 10 lists the local clocks used in this design.

Table 10: Local Clocks

Name Domain Source Freq

(MHz)

Accuracy

(%)

Start at

Reset

UART_IntClock DIGITAL MASTER_CLK 0.4615 ±1 True

PWM_1_Clock DIGITAL IMO 0.025 ±1 True

PWM_2_Clock DIGITAL IMO 0.025 ±1 True

Debouncer_Clock DIGITAL IMO 0.01 ±1 True

Timer_Clock_1MHz DIGITAL MASTER_CLK 1.00 ±1 True

v1.1 BSP For CY8CKIT-050

 November 2013 19 of 49

Name Domain Source Freq

(MHz)

Accuracy

(%)

Start at

Reset

ADC_DelSig_theACLK ANALOG MASTER_CLK 3.0 ±1 True

ADC_DelSig_Ext_CP_Clk DIGITAL MASTER_CLK 12.0 ±1 True

ADC_SAR_1_theACLK ANALOG MASTER_CLK 1.7778 ±1 True

ADC_SAR_2_theACLK ANALOG MASTER_CLK 1.7778 ±1 True

CapSense_IntClock DIGITAL MASTER_CLK 12.0 ±1 True

CapSense_Clock_tmp DIGITAL BUS_CLK 48 ±1 True

For more information on clocking resources, please refer to:

 Clocking System chapter in the PSoC 5LP Technical Reference Manual

 Clocking chapter in the System Reference Guide

o CyPLL API routines

o CyIMO API routines

o CyILO API routines

o CyMaster API routines

o CyXTAL API routines

Using the cy_clock Component

The local clocks listed in Table 10 can be managed from software using the following APIs.

Note that changing the ADC and CapSense clocks is very likely to have unintended

consequences on component behavior, and is not recommended.

Important: Note that the string “Clockname” in the following APIs should be replaced with

the name of the cy_clock component listed in Table 10, e.g. PWM_1_Start().

Table 11: cy_clock APIs

Function Description

Clockname_Start() Enables the clock.

Clockname_Stop() Disables the clock.

Clockname_StopBlock() Disables the clock and waits until the clock is disabled.

Clockname_StandbyPower() Selects the power for standby (Alternate Active)

operation mode.

Clockname_SetDivider() Sets the divider of the clock and restarts the clock divider

immediately.

Clockname_SetDividerRegister() Sets the divider of the clock and optionally restarts the

clock divider immediately.

Clockname_SetDividerValue() Sets the divider of the clock and restarts the clock divider

immediately.

Clockname_GetDividerRegister() Gets the clock divider register value.

Clockname_SetMode() Sets flags that control the operating mode of the clock.

Clockname_SetModeRegister() Sets flags that control the operating mode of the clock.

http://www.cypress.com/go/psoc5_trm
http://www.cypress.com/go/comp_cy_boot

BSP For CY8CKIT-050 v1.1

20 of 49 November 2013

Function Description

Clockname_GetModeRegister() Gets the clock mode register value.

Clockname_ClearModeRegister() Clears flags that control the operating mode of the clock.

Clockname_SetSource() Sets the source of the clock.

Clockname_SetSourceRegister() Sets the source of the clock.

Clockname_GetSourceRegister() Gets the source of the clock.

Clockname_SetPhase() Sets the phase delay of the analog clock (only generated

for analog clocks).

Clockname_SetPhaseRegister() Sets the phase delay of the analog clock (only generated

for analog clocks).

Clockname_SetPhaseValue() Sets the phase delay of the analog clock (only generated

for analog clocks).

Clockname_GetPhaseRegister() Gets the phase delay of the analog clock (only generated

for analog clocks).

 November 2013 YFS

Interrupts
This design contains the following interrupt components (0 is the highest priority).

Table 12: Interrupts

Name Priority Vector Integrated into

Component

ADC_DelSig_Interrupt 7 29 Yes

ADC_DelSig_IRQ 7 13 Yes

ADC_SAR_1_Interrupt 7 0 Yes

ADC_SAR_1_IRQ 7 14 Yes

ADC_SAR_2_Interrupt 7 1 Yes

ADC_SAR_2_IRQ 7 16 Yes

CapSense_IsrCH0 7 17 Yes

Comp_1_High_ISR 7 2 No

Comp_1_Low_ISR 7 3 No

Comp_2_High_ISR 7 4 No

Comp_2_Low_ISR 7 5 No

Comp_3_High_ISR 7 6 No

Comp_3_Low_ISR 7 7 No

I2C_isr 7 15 Yes

SW2_Interrupt 7 8 No

SW3_Interrupt 7 9 No

Timer_1MHz_Interrupt 7 10 No

UART_RX_Interrupt 7 11 No

UART_TX_Interrupt 7 12 No

For more information on interrupts, please refer to:

 Interrupt Controller chapter in the PSoC 5LP Technical Reference Manual

 Interrupts chapter in the System Reference Guide

o CyInt API routines and related registers

o Datasheet for cy_isr component

Global Interrupt Control

The following macros enable/disable all interrupts in the system. Note that some RTOS

implementations enable interrupts in the OS startup code.

 CyGlobalIntEnable

 CyGlobalIntDisable

Note that these macros do not require trailing parentheses (i.e. the instruction

“CyGlobalIntEnable;” will enable interrupts).

http://www.cypress.com/go/psoc5_trm
http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/comp_cy_isr

v1.1 BSP For CY8CKIT-050

Page 22 of 49 November 2013

Using the cy_isr Component

The interrupts listed in Table 12 can be managed from software. In some cases the interrupts

have been integrated into the component that uses them (e.g. I2C) and in others they are

independent (e.g. SW2_Interrupt). The integrated interrupts are handled by the component

APIs and do not need to be set up and enabled in application code. The independent

interrupts (marked “No” in the “Integrated into Component” in Table 12) are visible in the

schematic sheets below and need to be set up by the user (if required).

The following macros are useful for creating ISR routines that are compatible with the cy_isr

APIs. These macros provide consistent definition of interrupt service routines across

compilers and platforms. Note that the macro to use is different between the function

definition and the function prototype.

Function prototype example:

CY_ISR_PROTO(MyISR);

Function definition example:

CY_ISR(MyISR)

{

/* ISR Code here */

}

ISRs that are declared and defined in this way can be installed using the ISRname_StartEx()

API below.

Important: Note that the string “ISRname” in the following APIs should be replaced with the

name of the cy_isr component listed in Table 12, e.g. SW2_Interrupt_StartEx().

Table 13: cy_isr APIs

Function Description

ISRname_Start() Sets up the interrupt to function.

ISRname_StartEx() Sets up the interrupt to function and sets address as the

ISR vector for the interrupt.

ISRname_Stop() Disables and removes the interrupt.

ISRname_Interrupt() The default interrupt handler for ISR.

ISRname_SetVector() Sets address as the new ISR vector for the Interrupt.

ISRname_GetVector() Gets the address of the current ISR vector for the

interrupt.

ISRname_SetPriority() Sets the priority of the interrupt.

ISRname_GetPriority() Gets the priority of the interrupt.

ISRname_Enable() Enables the interrupt to the interrupt controller.

ISRname_GetState() Gets the state (enabled, disabled) of the interrupt.

ISRname_Disable() Disables the interrupt.

ISRname_SetPending() Causes the interrupt to enter the pending state, a software

method of generating the interrupt.

BSP For CY8CKIT-050 v1.1

 November 2013 Page 23 of 49

Function Description

ISRname_ClearPending() Clears a pending interrupt.

DMA
This design contains no DMA components.

v1.1 BSP For CY8CKIT-050

Page 24 of 49 November 2013

Design Contents
This chapter describes how the PSoC was configured. You may change, add to, or delete

from, this configuration by editing the TopDesign.cycsh file in PSoC Creator.

This design's schematic content consists of the following schematic sheets.

Switches

The CY8CKIT-050 has mechanical switches attached to pins P6_1 (SW2) and P15_5 (SW3).

The cy_pins component APIs can be used to read the state of the switches (e.g.

P6_1_Read()). Note that the inputs are grounded on the board, meaning that the *_Read()

APIs return 0 when the switch is pressed and 1 when it is open.

The Debouncer components remove "ringing" when the switches are pressed (no need for

software debouncing) and assert individual interrupts (on negative edges) for each switch.

Figure 5: Switches

This schematic sheet contains the following component instances (click links for details on

features and APIs).

 SW1_Debouncer and SW2_Debouncer (type: Debouncer_v1_0)

 Debouncer_Clock (type: cy_clock_v2_10)

 P6_1 and P15_5 (type cy_pins_v1_90)

 SW2_Interrupt and SW3_Interrupt (type cy_isr_v1_70)

Table 14: SWn_Debouncer Parameters

Parameter Value Description

EitherEdgeDetect False Specifies whether positive or negative
edge detection is enabled

NegEdgeDetect True Specifies whether negative edge
detection is enabled

PosEdgeDetect False Specifies whether positive edge
detection is enabled

http://www.cypress.com/go/comp_debouncer

BSP For CY8CKIT-050 v1.1

 November 2013 Page 25 of 49

SignalWidth 1 Width of input and output terminals.

LEDs

The CY8CKIT-050 has LEDs attached to pins P6_2 (LED3) and P6_3 (LED4). These pins

are driven by custom LED_Control components. The LED_Control components enable the

selection of the signal to route to the LEDs (software, in1, in2, in1&in2, in1^in2).

The PWMs are also connected directly to P12_6 and P12_7. This allows the PWM outputs to

be available in the breadboard area even when LED3 and LED4 are being driven by

software.

Figure 6: LEDs

This schematic sheet contains the following component instances (click links for details on

features and APIs).

 LED3_Control and LED4_Control (type: LED_Control_v1_00)

o Note that the LED_Control component was created specifically for this BSP to enable
different uses of the LEDs on the board. The datasheet is not available on the web
but is included in each of the project files

o CY8CKIT-050-***\Demo.cydsn\LED_Control_v1_00\LED_Control_v1_00.pdf)

 PWM_1 and PWM_2 (type: PWM_v3_0)

 PWM_1_Clock and PWM_2_Clock (type: cy_clock_v2_10)

 P6_2, P6_3, P12_6 and P12_7 (type cy_pins_v1_90)

 SW2_Interrupt and SW3_Interrupt (type cy_isr_v1_70)

Table 15: LEDn_Control Parameters

Parameter Value Description

channel Software Selects the signal driven to the output

http://www.cypress.com/go/comp_pwm

v1.1 BSP For CY8CKIT-050

Page 26 of 49 November 2013

Table 16: LEDn_Control APIs

Function Description

void LEDn_Control_Set_Channel(int use) Chooses which signal to route to the
output/LED. Reads the register, modifies the
bits that control the signal selection, and
writes the new value back to the register.

int LEDn_Control_Get_Channel(void) Returns the value of the software bit in the
control register. If the output is driven from
the schematic the return value is undefined.

void LEDn_Control_Write(int value) Writes to the LED when it is driven from
software. Reads the register and checks that
the selected output is software-driven. If so, it
updates the bit that drives the output based
on the function argument. If the output is
driven from the schematic this API has no
effect.

int LEDn_Control_Read(void) Returns the value of the software bit in the
control register. If the output is driven from
the schematic the return value is undefined.

Table 17: PWM_n Parameters

Parameter Value Description

Resolution 16-bits The bit-width of the period counter

Period 249 (10ms) for
PWM_1

248 (9.96ms) for
PWM_2

Initial (and reload) value of the counter

Compare 125 PWM output compare value

CompareType Greater than or
Equal

The PWM output will be high if the
Period is greater than or equal to the
Compare

Figure 7: PWM_n APIs

Function Description

PWM_n_Start() Initializes the PWM with default customizer

values.

PWM_n _Stop() Disables the PWM operation. Clears the

enable bit of the control register for either of

the software controlled enable modes.

PWM_n _SetInterruptMode() Configures the interrupts mask control of the

interrupt source status register.

PWM_n _ReadStatusRegister() Returns the current state of the status register.

PWM_n _ReadControlRegister() Returns the current state of the control

register.

PWM_n _WriteControlRegister() Sets the bit field of the control register.

BSP For CY8CKIT-050 v1.1

 November 2013 Page 27 of 49

Function Description

PWM_n _SetCompareMode() Writes the compare mode for compare output

when set to Dither mode, Center Align mode

or One Output mode.

PWM_n _SetCompareMode1() Writes the compare mode for compare1

output into the control register.

PWM_n _SetCompareMode2() Writes the compare mode for compare2

output into the control register.

PWM_n _ReadCounter() Reads the current counter value (software

capture).

PWM_n _ReadCapture() Reads the capture value from the capture

FIFO.

PWM_n _WriteCounter() Writes a new counter value directly to the

counter register. This will be implemented only

for that currently running period.

PWM_n _WritePeriod() Writes the period value used by the PWM

hardware.

PWM_n _ReadPeriod() Reads the period value used by the PWM

hardware.

PWM_n _WriteCompare() Writes the compare value when the instance

is defined as Dither mode, Center Align mode

or One Output mode.

PWM_n _ReadCompare() Reads the compare value when the instance

is defined as Dither mode, Center Align mode

or One Output mode.

PWM_n _WriteCompare1() Writes the compare value for the compare1

output.

PWM_n _ReadCompare1() Reads the compare value for the compare1

output.

PWM_n _WriteCompare2() Writes the compare value for the compare2

output

PWM_n _ReadCompare2() Reads the compare value for the compare2

output.

PWM_n _WriteDeadTime() Writes the dead time value used by the

hardware in dead band implementation.

PWM_n _ReadDeadTime() Reads the dead time value used by the

hardware in dead band implementation.

PWM_n _WriteKillTime() Writes the kill time value used by the

hardware when the kill mode is set as

Minimum Time.

PWM_n _ReadKillTime() Reads the kill time value used by the

hardware when the kill mode is set as

Minimum Time.

v1.1 BSP For CY8CKIT-050

Page 28 of 49 November 2013

Function Description

PWM_n _ClearFIFO() Clears all capture data from the capture FIFO.

PWM_n _Sleep() Stops and saves the user configuration.

PWM_n _Wakeup() Restores and enables the user configuration.

PWM_n _Init() Initializes component's parameters to those

set in the customizer placed on the schematic.

PWM_n _Enable() Enables the PWM block operation.

PWM_n _SaveConfig() Saves the current user configuration of the

component.

PWM_n _RestoreConfig() Restores the current user configuration of the

component.

BSP For CY8CKIT-050 v1.1

 November 2013 Page 29 of 49

Communications

The I2C is connected to P12_4 (SCL) and P12_5 (SDA), which are available on the header

next to the breadboard.

Figure 8: I2C

The UART is connected to P6_0 (TX) and P6_6 (RX), which are available on the header next

to the breadboard. Use jumper wires to connect to the TX and RX header, next to the D-sub

connector.

Figure 9: UART

This schematic sheet contains the following component instances (click links for details on

features and APIs).

 I2C (type: EZI2C_v1_90)

 UART (type: UART_v2_30)

 P6_6 and P16_0 (type cy_pins_v1_90)

 UART_TX_Interrupt and UART_RX_Interrupt (type cy_isr_v1_70)

Table 18: I2C Parameters

Parameter Value Description

Data Rate 100kbps Used to set the I2C data rate value up
to 1000 kbps.The standard data rates
are 50, 100 (default), 400, and 1000
kbps.

Slave Address 0x08 I2C slave address - this address is the
7-bit right-justified slave address and
does not include the R/W bit.

Sub-address Size 8-bit Determines what range of data can be
accessed.

http://www.cypress.com/go/comp_i2c
http://www.cypress.com/go/comp_uart

v1.1 BSP For CY8CKIT-050

Page 30 of 49 November 2013

Table 19: I2C APIs

Function Description

I2C_Start() Starts responding to I2C traffic. Enables

interrupt.

I2C_Stop() Stops responding to I2C traffic. Disables

interrupt.

I2C_EnableInt() Enables interrupt, which is required for most I2C

operations.

I2C_DisableInt() Disables interrupt. The I2C_Stop() API does this

automatically.

I2C_SetAddress1() Sets the primary I2C address.

I2C_GetAddress1() Returns the primary I2C address.

I2C_SetBuffer1() Sets the buffer pointer for the primary I2C.

I2C_GetActivity(void) Checks component activity status.

I2C_Sleep() Stops I2C operation and saves I2C

configuration. Disables interrupt.

I2C_Wakeup() Restores I2C configuration and starts I2C

operation. Enables interrupt.

I2C_Init() Initializes I2C registers with initial values

provided from customizer.

I2C_Enable() Activates the hardware and begins component

operation.

I2C_SaveConfig() Saves the current user configuration of the

EZI2C component.

I2C_RestoreConfig() Restores nonretention I2C registers.

Table 20: I2C Sleep/Wake APIs

Function Description

I2C_SlaveSetSleepMode() Deprecated in v1.90. Use I2C_Sleep() instead.

I2C_SlaveSetWakeMode() Deprecated in v1.90. Use I2C_Wakeup() instead.

Table 21: UART Parameters

Parameter Value Description

Mode Full Full UART (TX + RX)

Bits per Second 57600 The baud-rate or bit-width
configuration of the hardware for clock
generation

Data Bits 8 The number of data bits transmitted
between start and stop of a single
UART transaction

Parity Type None Defines the functionality of the parity

BSP For CY8CKIT-050 v1.1

 November 2013 Page 31 of 49

bit location in the transfer

API Control of Parity Disabled The UART parity may not be changed
by the UART_WriteControlRegister()
API.

Stop Bits 1 Defines the number of stop bits
implemented in the transmitter

Flow Control None CTS and RTS signals are disabled

Rx_Interrrupt Byte received

Parity error

Stop error

Break

Overrun error

Recognized causes of an Rx interrupt

Tx_Interrrupt Tx complete Recognized causes of a Tx interrupt

Table 22: UART APIs

Function Description

UART_Start() Initializes and enables the UART operation

UART_Stop() Disables the UART operation

UART_ReadControlRegister() Returns the current value of the control register

UART_WriteControlRegister() Writes an 8-bit value into the control register

UART_EnableRxInt() Enables the internal interrupt irq

UART_DisableRxInt() Disables the internal interrupt irq

UART_SetRxInterruptMode() Configures the RX interrupt sources enabled

UART_ReadRxData() Returns the data in the RX Data register

UART_ReadRxStatus() Returns the current state of the status register

UART_GetChar() Returns the next byte of received data

UART_GetByte() Reads the UART RX buffer immediately and

returns the received character and error

condition

UART_GetRxBufferSize() Returns the number of received bytes

remaining in the RX buffer and returns the

count in bytes

UART_ClearRxBuffer() Clears the memory array of all received data

UART_SetRxAddressMode() Sets the software-controlled Addressing mode

used by the RX portion of the UART

UART_SetRxAddress1() Sets the first of two hardware-detectable

addresses

UART_SetRxAddress2() Sets the second of two hardware-detectable

addresses

UART_EnableTxInt() Enables the internal interrupt irq

UART_DisableTxInt() Disables the internal interrupt irq

UART_SetTxInterruptMode() Configures the TX interrupt sources enabled

v1.1 BSP For CY8CKIT-050

Page 32 of 49 November 2013

Function Description

UART_WriteTxData() Sends a byte without checking for buffer room

or status

UART_ReadTxStatus() Reads the status register for the TX portion of

the UART

UART_PutChar() Puts a byte of data into the transmit buffer to

be sent when the bus is available

UART_PutString() Places data from a string into the memory

buffer for transmitting

UART_PutArray() Places data from a memory array into the

memory buffer for transmitting

UART_PutCRLF() Writes a byte of data followed by a Carriage

Return and Line Feed to the transmit buffer

UART_GetTxBufferSize() Determines the number of bytes used in the TX

buffer. An empty buffer returns 0

UART_ClearTxBuffer() Clears all data from the TX buffer

UART_SendBreak() Transmits a break signal on the bus

UART_SetTxAddressMode () Configures the transmitter to signal the next

bytes as address or data

UART_LoadRxConfig() Loads the receiver configuration. Half Duplex

UART is ready for receive byte

UART_LoadTxConfig() Loads the transmitter configuration. Half

Duplex UART is ready for transmit byte

UART_Sleep() Stops the UART operation and saves the user

configuration

UART_Wakeup() Restores and enables the user configuration

UART_Init() Initializes default configuration provided with

customizer

UART_Enable() Enables the UART block operation

UART_SaveConfig() Save the current user configuration

UART_RestoreConfig() Restores the user configuration

BSP For CY8CKIT-050 v1.1

 November 2013 Page 33 of 49

Timer

The Timer_1MHz is a 32-bit timer with a 1Mhz (1ms precision) input clock. By default the

Timer_1MHz_Interrupt is asserted on terminal count.

Figure 10: MHz Timer

This schematic sheet contains the following component instances (click links for details on

features and APIs).

 Timer_1MHz (type: Timer_v2_50)
 Timer_Clock_1MHz (type: cy_clock_v2_10)

 Timer_1MHz_Interrupt (type cy_isr_v1_70)

Table 23: Timer_1MHz Parameters

Parameter Value Description

Resolution 32-bit Bit-width resolution

Period 4294967296 Defines the period of the counter,
which is one greater than the
maximum count value (or rollover
point)

Trigger Mode None Trigger mode is not enabled.

Capture Mode None Capture mode is not enabled.

Enable Mode None Enable mode is not enabled.

Run Mode Continuous Runs continuously while it is enabled

Interrupts On TC Generate an interrupt on terminal
count

Table 24: Timer_1MHz APIs

Function Description

Timer_1MHz_Start() Sets the initVar variable, calls the Timer_Init()

function, and then calls the Enable function.

Timer_1MHz_Stop() Disables the Timer.

Timer_1MHz_SetInterruptMode() Enables or disables the sources of the interrupt

output.

Timer_1MHz_ReadStatusRegister() Returns the current state of the status register.

Timer_1MHz_ReadControlRegister() Returns the current state of the control register.

Timer_1MHz_WriteControlRegister() Sets the bit-field of the control register.

http://www.cypress.com/go/comp_timer

v1.1 BSP For CY8CKIT-050

Page 34 of 49 November 2013

Function Description

Timer_1MHz_WriteCounter() Writes a new value directly into the counter

register. (UDB only)

Timer_1MHz_ReadCounter() Forces a capture, and then returns the capture

value.

Timer_1MHz_WritePeriod() Writes the period register.

Timer_1MHz_ReadPeriod() Reads the period register.

Timer_1MHz_ReadCapture() Returns the contents of the capture register or

the output of the FIFO.

Timer_1MHz_SetCaptureMode() Sets the hardware or software conditions under

which a capture will occur.

Timer_1MHz_SetCaptureCount() Sets the number of capture events to count

before capturing the counter register to the

FIFO.

Timer_1MHz_ReadCaptureCount() Reports the current setting of the number of

capture events.

Timer_1MHz_SoftwareCapture() Forces a capture of the counter to the capture

FIFO

Timer_1MHz_SetTriggerMode() Sets the hardware or software conditions under

which a trigger will occur.

Timer_1MHz_EnableTrigger() Enables the trigger mode of the timer.

Timer_1MHz_DisableTrigger() Disables the trigger mode of the timer.

Timer_1MHz_SetInterruptCount() Sets the number of captures to count before an

interrupt is triggered.

Timer_1MHz_ClearFIFO() Clears the capture FIFO.

Timer_1MHz_Sleep() Stops the Timer and saves its current

configuration.

Timer_1MHz_Wakeup() Restores the Timer configuration and re-

enables the Timer.

Timer_1MHz_Init() Initializes or restores the Timer per the

Configure dialog settings.

Timer_1MHz_Enable() Enables the Timer.

Timer_1MHz_SaveConfig() Saves the current configuration of the Timer.

Timer_1MHz_RestoreConfig() Restores the configuration of the Timer.

BSP For CY8CKIT-050 v1.1

 November 2013 Page 35 of 49

Analog-Digital Converters (ADC)

There are three ADCs in the design. All are free-running (after the *_StartConvert() API is

called) and generate an interrupt at the end of a conversion.

ADC_SAR_1 is connected directly to the on-board potentiometer.

Figure 11: SAR ADC 1

ADC_SAR_2 is connected directly to P0_1, which is near the breadboard area.

Figure 12: SAR ADC 2

ADC_DelSig is connected directly to P0_0, which is near the breadboard area.

Figure 13: Delta-Sigma ADC

This schematic sheet contains the following component instances (click links for details on

features and APIs).

 ADC_DelSig (type: ADC_DelSig_v3_0)

 ADC_SAR_1 and ADC_SAR_2 (type: ADC_SAR_v2_10)

http://www.cypress.com/go/comp_adc_delsig
http://www.cypress.com/go/comp_adc_sar

v1.1 BSP For CY8CKIT-050

Page 36 of 49 November 2013

 P6_5, P0_0 and P0_1 (type cy_pins_v1_90)

 ADC_SAR_1_Interrupt, ADC_SAR_2_Interrupt and ADC_DelSig_Interrupt (type
cy_isr_v1_70)

Table 25: ADC_SAR_n Parameters

Parameter Value Description

Resolution 12-bits Size of read data

Conversion Rate 100000sps The conversion rate in samples per
second - the conversion time is the
inverse of the conversion rate

Sample Mode Free Running ADC runs continuously

Input Range Vssa to Vdda
(Single Ended)

Uses the VDDA/2 reference; the
usable input range covers the full
analog supply voltage. The ADC is put
in a single-ended input mode with the –
Input connected internally to
Vrefhi_out.

Table 26: ADC_SAR_n APIs

Function Description

ADC_SAR_n_Start() Powers up the ADC and resets all states

ADC_SAR_n_Stop() Stops ADC conversions and reduces the power

to the minimum

ADC_SAR_n_SetPower() Sets the power mode

ADC_SAR_n_SetResolution() Sets the resolution of the ADC

ADC_SAR_n_StartConvert() Starts conversions

ADC_SAR_n_StopConvert() Stops conversions

ADC_SAR_n_IRQ_Enable() An internal IRQ is connected to the eoc. This

API enables the internal ISR.

ADC_SAR_n_IRQ_Disable() An internal IRQ is connected to the eoc. This

API disables the internal ISR.

ADC_SAR_n_IsEndConversion() Returns a nonzero value if conversion is

complete

ADC_SAR_n_GetResult8() Returns a signed 8-bit conversion result

ADC_SAR_n_GetResult16() Returns a signed16-bit conversion result

ADC_SAR_n_SetOffset() Sets the offset of the ADC

ADC_SAR_n_SetGain() Sets the ADC gain in counts per volt

ADC_SAR_n_CountsTo_Volts() Converts ADC counts to floating-point volts

ADC_SAR_n_CountsTo_mVolts() Converts ADC counts to millivolts

ADC_SAR_n_CountsTo_uVolts() Converts ADC counts to microvolts

ADC_SAR_n_Sleep() Stops ADC operation and saves the user

configuration

ADC_SAR_n_Wakeup() Restores and enables the user configuration

BSP For CY8CKIT-050 v1.1

 November 2013 Page 37 of 49

Function Description

ADC_SAR_n_Init() Initializes the default configuration provided with

the customizer

ADC_SAR_n_Enable() Enables the clock and power for the ADC

ADC_SAR_n_SaveConfig() Saves the current user configuration

ADC_SAR_n_RestoreConfig() Restores the user configuration

Table 27: ADC_DelSig Parameters

Parameter Value Description

Resolution 20-bits Size of read data

Conversion Rate 187sps The conversion rate in samples per
second - the conversion time is the
inverse of the conversion rate

Sample Mode Continuous Continuous sample mode operates as
a normal delta-sigma converter, taking
repeated samples at the conversion
rate.

There is a latency of three conversion
times before the first conversion result
is available. This is the time required to
prime the internal filter. After the first
result, a conversion will be available at
the selected sample rate.

Configs 1 The number of different configurations
of the ADC – selected by the
ADC_SelectConfiguration() API.

Input Range Vssa to Vdda
(Single ended)

This mode is ratiometric of the supply
voltage.

Table 28: ADC_DelSig APIs

Function Description

ADC_DelSig_Start() Sets the initVar variable, calls the

ADC_DelSig_Init() function, and then calls the

ADC_DelSig_Enable() function.

ADC_DelSig_Stop() Stops ADC conversions and powers down.

ADC_DelSig_SetBufferGain() Selects input buffer gain (1,2,4,8)

ADC_DelSig_StartConvert() Starts conversion.

ADC_DelSig_StopConvert() Stops conversions

ADC_DelSig_IRQ_Enable() Enables interrupts at end of conversion.

ADC_DelSig_IRQ_Disable() Disables interrupts.

ADC_DelSig_IsEndConversion() Returns a nonzero value if conversion is

complete.

v1.1 BSP For CY8CKIT-050

Page 38 of 49 November 2013

Function Description

ADC_DelSig_GetResult8() Returns an 8-bit conversion result, right

justified.

ADC_DelSig_GetResult16() Returns a 16-bit conversion result, right

justified.

ADC_DelSig_GetResult32() Returns a 32-bit conversion result, right

justified.

ADC_DelSig_Read8() Returns an 8-bit conversion result. Blocking call

that starts a conversion, obtains the result, then

stops the conversion.

ADC_DelSig_Read16() Returns a 16-bit conversion result. Blocking call

that starts a conversion, obtains the result, then

stops the conversion.

ADC_DelSig_Read32() Returns a 32-bit conversion result. Blocking call

that starts a conversion, obtains the result, then

stops the conversion.

ADC_DelSig_SetOffset() Sets the offset used by the

ADC_DelSig_CountsTo_mVolts(),

ADC_DelSig_CountsTo_uVolts(), and

ADC_DelSig_CountsTo_Volts() functions.

ADC_DelSig_SelectConfiguration() Sets one of up to four ADC configurations.

ADC_DelSig_SetGain() Sets the gain used by the

ADC_DelSig_CountsTo_mVolts(),

ADC_DelSig_CountsTo_uVolts(), and

ADC_DelSig_CountsTo_Volts() functions.

ADC_DelSig_CountsTo_mVolts() Converts ADC counts to mV.

ADC_DelSig_CountsTo_uVolts() Converts ADC counts to µV.

ADC_DelSig_CountsTo_Volts() Converts ADC counts to floating point volts.

ADC_DelSig_Sleep() Stops ADC operation and saves the user

configuration.

ADC_DelSig_Wakeup() Restores and enables the user configuration.

ADC_DelSig_Init() Initializes or restores the ADC using the

Configure dialog settings.

ADC_DelSig_Enable() Enables the ADC.

ADC_DelSig_SaveConfig() Saves the current configuration.

ADC_DelSig_RestoreConfig() Restores the configuration.

ADC_DelSig_SetCoherency() Sets the coherency register.

ADC_DelSig_SetGCOR() Calculates a new GCOR value and sets the

GCOR registers with this new value.

ADC_DelSig_ReadGCOR() Returns the normalized GCOR register values.

BSP For CY8CKIT-050 v1.1

 November 2013 Page 39 of 49

Digital-Analog Converter (DAC)

A voltage DAC is connected to P0_4, which is near the breadboard area.

Figure 14: Voltage DAC

This schematic sheet contains the following component instances (click links for details on

features and APIs).

 DAC (type: VDAC8_v1_90)

 P0_4 (type cy_pins_v1_90)

Table 29: DAC Parameters

Parameter Value Description

Range 4 Volt The DAC will generate a voltage
between 0.000V and 4.080V, in 16mV
increments.

Note that Vdda on the kit is 3.3V and
so the DAC output will saturate at that
voltage.

Initial Value 0 This is the initial value the VDAC8
presents after the DAC_Start()
command is executed.

Speed High The DAC is set to high speed mode,
where the voltage settles quickly, but
at a cost of more operating current.

Table 30: DAC APIs

Function Description

DAC_Start() Initializes the VDAC8 with default customizer

values.

DAC_Stop() Disables the VDAC8 and sets it to the lowest

power state.

DAC_SetSpeed() Sets DAC speed.

DAC_SetValue() Sets value between 0 and 255 with the given

range.

DAC_SetRange() Sets range to 1 or 4 volts.

DAC_Sleep() Stops and saves the user configuration.

DAC_WakeUp() Restores and enables the user configuration.

http://www.cypress.com/go/comp_vdac8

v1.1 BSP For CY8CKIT-050

Page 40 of 49 November 2013

DAC_Init() Initializes or restores default VDAC8

configuration

DAC_Enable() Enables the VDAC8.

DAC_SaveConfig() Saves nonretention DAC data register value.

DAC_RestoreConfig() Restores nonretention DAC data register value

BSP For CY8CKIT-050 v1.1

 November 2013 Page 41 of 49

Comparators

There are three Comparators, each of which is configured with 10mV of hysteresis.

Reference voltages can be sourced from P0_3 or one of two DACs (Comp_n_Ref). Each one

can perform a different comparison and generate interrupts on both a rising

(Comp_n_High_ISR) or falling edge (Comp_n_Low_ISR).

 Comp_1 compares the voltage on P0_2 with the output of the Comp_1_VRef DAC.

 Comp_2 compares the voltage on P0_3 with the output of the Comp_2_VRef DAC.

 Comp_3 compares the voltage on P0_2 with the voltage on P0_3.

Figure 15: Comparators

This schematic sheet contains the following component instances (click links for details on

features and APIs).

 Comp_1, Comp_2 and Comp_3 (type: Comp_v2_0)

 Comp_1_VRef and Comp_2_VRef (type: VDAC8_v1_90)

 P0_2 and P0_3 (type cy_pins_v1_90)

 Comp_1/2/3_High/Low_ISR (type cy_isr_v1_70)

Table 31: Comp_n Parameters

Parameter Value Description

Hysteresis Enabled Adds approximately 10 mV of
hysteresis to the comparator

Speed Slow Response time is slower than 80ns

PowerDownOverride Disabled The Comparator does not remain active
in sleep mode

Polarity Non-inverting Output goes high when positive input is
greater than negative input

http://www.cypress.com/go/comp_comp
http://www.cypress.com/go/comp_vdac8

v1.1 BSP For CY8CKIT-050

Page 42 of 49 November 2013

Table 32: Comp_n APIs

Function Description

Comp_n_Start() Initializes the Comparator with default

customizer values.

Comp_n _Stop() Turns off the Comparator.

Comp_n _SetSpeed() Sets speed of the Comparator.

Comp_n _ZeroCal() Zeros the input offset of the Comparator.

Comp_n _GetCompare() Returns compare result.

Comp_n _LoadTrim() Writes a value to the Comparator trim register.

Comp_n _Sleep() Stops Comparator operation and saves the user

configuration.

Comp_n _Wakeup() Restores and enables the user configuration.

Comp_n _Init() Initializes or restores default Comparator

configuration.

Comp_n _Enable() Enables the Comparator.

Comp_n _SaveConfig() Empty function. Provided for future use.

Comp_n _RestoreConfig() Empty function. Provided for future use.

Table 33: Comp_n_VRef Parameters

Parameter Value Description

Range 4 Volt The DAC will generate a voltage
between 0.000V and 4.080V, in 16mV
increments.

Note that Vdda on the kit is 3.3V and so
the DAC output will saturate at that
voltage.

Initial Value 1104mV (0x45) in
Comp_1_VRef

2208 (0x8A) in
Comp_2_VRef

This is the initial value the VDAC8
presents after the DAC_Start()
command is executed.

Speed Slow The DAC is set to low speed mode,
where the voltage settles slowly, but
operating current is reduced.

Table 34: Comp_n_VRef APIs

Function Description

Comp_n_VRef*() See Table 30: DAC APIs above for VDAC8 API

information.

Note that the API prefix “DAC” should be

replaced with “Comp_n_VRef”.

BSP For CY8CKIT-050 v1.1

 November 2013 Page 43 of 49

CapSense

The CapSense buttons are connected to P5_5 (B0) and P5_6 (B1). The Slider is connected

to five pins, P5_0..P5_4.

Figure 16: CapSense

This schematic sheet contains the following component instance (click link for online

component datasheet with details on features and APIs).

 CapSense (type: CapSense_CSD_v3_40)

Table 35: General APIs

Function Description

CapSense_Start() Preferred method to start the component.

Initializes registers and enables active mode

power template bits of the subcomponents used

within CapSense.

CapSense_Stop() Disables component interrupts, and calls

CapSense_ClearSensors() to reset all sensors

to an inactive state.

CapSense_Sleep() Prepares the component for the device entering

a low-power mode. Disables Active mode power

template bits of the sub components used within

CapSense, saves nonretention registers, and

resets all sensors to an inactive state.

CapSense_Wakeup() Restores CapSense configuration and

nonretention register values after the device

wake from a low power mode sleep mode.

CapSense_Init() Initializes the default CapSense configuration

provided with the customizer.

CapSense_Enable() Enables the Active mode power template bits of

the subcomponents used within CapSense.

CapSense_SaveConfig() Saves the configuration of CapSense

nonretention registers. Resets all sensors to an

inactive state.

CapSense_RestoreConfig() Restores CapSense configuration and

nonretention register values.

http://www.cypress.com/go/comp_capsense

v1.1 BSP For CY8CKIT-050

Page 44 of 49 November 2013

Table 36:Scanning APIs

Function Description

CapSense_ScanSensor() Sets scan settings and starts scanning a

sensor or group of combined sensors on each

channel.

CapSense_ScanEnabledWidgets() The preferred scanning method. Scans all of

the enabled widgets.

CapSense_IsBusy() Returns the status of sensor scanning.

CapSense_SetScanSlotSettings() Sets the scan settings of the selected scan slot

(sensor or pair of sensors).

CapSense_ClearSensors() Resets all sensors to the nonsampling state.

CapSense_EnableSensor() Configures the selected sensor to be scanned

during the next scanning cycle.

CapSense_DisableSensor() Disables the selected sensor so it is not

scanned in the next scanning cycle.

CapSense_ReadSensorRaw() Returns sensor raw data from the

CapSense_SensorResult[] array.

CapSense_SetRBleed() Sets the pin to use for the bleed resistor (Rb)

connection if multiple bleed resistors are used.

Table 37: High-Level APIs

Function Description

CapSense_InitializeSensorBaseline() Loads the CapSense_SensorBaseline[sensor]

array element with an initial value by scanning

the selected sensor.

CapSense_InitializeEnabledBaselines() Loads the CapSense_SensorBaseline[] array

with initial values by scanning enabled sensors

only.

This function is available only for two-channel

designs.

CapSense_InitializeAllBaselines() Loads the CapSense_SensorBaseline[] array

with initial values by scanning all sensors.

CapSense_UpdateSensorBaseline() The historical count value, calculated

independently for each sensor, is called the

sensor's baseline. This baseline updated uses

a low-pass filter with k = 256.

CapSense_UpdateEnabledBaselines Checks the

CapSense_SensorEnableMask[]array and calls

the CapSense_UpdateSensorBaseline()

function to update the baselines for enabled

sensors.

BSP For CY8CKIT-050 v1.1

 November 2013 Page 45 of 49

Function Description

CapSense_EnableWidget() Enables all sensor elements in a widget for the

scanning process.

CapSense_DisableWidget() Disables all sensor elements in a widget from

the scanning process.

CapSense_CheckIsWidgetActive() Compares the selected of widget to the

CapSense_Signal[] array to determine if it has

a finger press.

CapSense_CheckIsAnyWidgetActive() Uses the CapSense_CheckIsWidgetActive()

function to find if any widget of the CapSense

CSD component is in active state.

CapSense_GetCentroidPos() Checks the CapSense_SensorSignal[] array for

a finger press in a linear slider and returns the

position.

CapSense_GetRadialCentroidPos() Checks the CapSense_SensorSignal[] array for

a finger press in a radial slider widget and

returns the position.

CapSense_GetTouchCentroidPos() If a finger is present, this function calculates

the X and Y position of the finger by calculating

the centroids within the touchpad.

CapSense_GetMatrixButtonPos() If a finger is present, this function calculates

the row and column position of the finger on

the matrix buttons.

v1.1 BSP For CY8CKIT-050

Page 46 of 49 November 2013

LCD

The LCD is connected to P20..P2_6. It is configured with the following special characters.

 CHAR_LO Used by the scope demo to indicate a low signal

 CHAR_HI Used by the scope demo to indicate a high signal

 CHAR_RISE Used by the scope demo to indicate a rising signal

 CHAR_FALL Used by the scope demo to indicate a falling signal

 CHAR_SINEH High phase of a sine wave

 CHAR_SINEL Low phase of a sine wave

 CHAR_MU Greek mu symbol

 CHAR_HEART Cute heart shape

Figure 17: LCD

This schematic sheet contains the following component instance (click link for online

component datasheet with details on features and APIs).

 LCD (type: CharLCD_v1_90)

Table 38: LCD APIs

Function Description

LCD_Start() Starts the module and loads custom character

set to LCD, if it was defined.

http://www.cypress.com/go/comp_charlcd

BSP For CY8CKIT-050 v1.1

 November 2013 Page 47 of 49

Function Description

LCD_Stop() Turns off the LCD

LCD_DisplayOn() Turns on the LCD module’s display

LCD_DisplayOff() Turns off the LCD module’s display

LCD_PrintString() Prints a null-terminated string to the screen,

character by character

LCD_PutChar() Sends a single character to the LCD module

data register at the current position.

LCD_Position() Sets the cursor’s position to match the row and

column supplied

LCD_WriteData() Writes a single byte of data to the LCD module

data register

LCD_WriteControl() Writes a single-byte instruction to the LCD

module control register

LCD_ClearDisplay() Clears the data from the LCD module’s screen

LCD_IsReady() Polls LCD until the ready bit is set

LCD_Sleep() Prepares component for entering sleep mode

LCD_Wakeup() Restores components configuration and turns

on the LCD

LCD_Init() Performs initialization required for component’s

normal work

LCD_Enable() Turns on the display

LCD_SaveConfig() Empty API provided to store any required data

prior entering to a Sleep mode.

LCD_RestoreConfig() Empty API provided to restore saved data after

exiting a Sleep mode.

v1.1 BSP For CY8CKIT-050

Page 48 of 49 November 2013

Other Resources
The following documents contain important information on Cypress software APIs that might

be relevant to this design:

 Standard Types and Defines chapter in the System Reference Guide

o Software base types

o Hardware register types

o Compiler defines

o Cypress API return codes

o Interrupt types and macros

 Registers

o The full PSoC 5LP register map is covered in the PSoC 5LP Registers Technical
Reference Manual

o Register Access chapter in the System Reference Guide

 CY_GET API routines
 CY_SET API routines

 System Functions chapter in the System Reference Guide

o General API routines

o CyDelay API routines

o CyVd Voltage Detect API routines

 Power Management

o Power Supply and Monitoring chapter in the PSoC 5LP Technical Reference Manual

o Low Power Modes chapter in the PSoC 5LP Technical Reference Manual

o Power Management chapter in the System Reference Guide

 CyPm API routines

 Watchdog Timer chapter in the System Reference Guide

o CyWdt API routines

 Cache Management

o Cache Controller chapter in the PSoC 5LP Technical Reference Manual

o Cache chapter in the System Reference Guide

 CyFlushCache() API routine

http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/psoc5_trm_registers
http://www.cypress.com/go/psoc5_trm_registers
http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/psoc5_trm
http://www.cypress.com/go/psoc5_trm
http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/psoc5_trm
http://www.cypress.com/go/comp_cy_boot

BSP For CY8CKIT-050 v1.1

 November 2013 Page 49 of 49

Revision History

Version Changes

1.0 New document

1.1 Revised document as part of the update to PSoC Creator 3.0.

Component version updates:

 I2C from 1.80 to 1.90
o Deprecated _SlaveSetSleepMode() and _SlaveSetWakeMode()

 ADC_DelSig from 2.30 to 3.0
o Added _Read8/16/32() APIs

 ADC_SAR from 2.0 to 2.10

 Clock from 2.0 to 2.10

 PWM from 2.40 to 3.0

 CapSense from 3.30 to 3.40

Replaced the slightly blurred image of device pins in Figure 1.

Removed references to deprecated system settings; “Require XRES Pin” and
“Temperature Range”.

Added (this) Revision History section.

