

User Guide for FreeRTOS on the
CY8CKIT-050 (PSoC 5LP Developers Kit)

v1.0

Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810

Phone (Intl): 408.943.2600

http://www.cypress.com

v1.0 FreeRTOS on CY8CKIT-050 User Guide

Page 2 of 16 March 2014

Copyrights

Copyright © 2014 Cypress Semiconductor Corporation. All rights reserved.

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Designer is a

trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced

herein are the property of their respective owners.

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license

under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system

conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips

Semiconductors has a new trade name, NXP Semiconductors.

The information in this document is subject to change without notice and should not be construed as a

commitment by Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for

any errors that may appear in this document. No part of this document may be copied, or reproduced for

commercial use, in any form or by any means without the prior written consent of Cypress.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS

MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to

the materials described herein. Cypress does not assume any liability arising out of the application or use of any

product or circuit described herein. Cypress does not authorize its products for use as critical components in life-

support systems where a malfunction or failure may reasonably be expected to result in significant injury to the

user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer

assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress

believes that its family of PSoC products is one of the most secure families of its kind on the market today,

regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code

protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither

Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection

does not mean that we are guaranteeing the product as “unbreakable.”

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is

constantly evolving. We at Cypress are committed to continuously improving the code protection features of our

products.

FreeRTOS on CY8CKIT-050 User Guide v1.0

 March 2014 Page 3 of 16

Table of Contents

Chapters

Table of Contents .. 3

Chapters .. 3

Figures... 4

CY8CKIT-050 Kit ... 5

Hardware Tools ... 6

Software Tools .. 6

Compiler Toolchain .. 6

CY8CKIT-042-GNU.. 6

CY8CKIT-042-MDK ... 6

Using PSoC Creator .. 6

Board Support Package .. 7

Board Setup ... 7

Modifying the BSP ... 7

Example – “Demo” .. 7

Running the Demo ... 8

Glowing PWMs .. 8

ADC SAR ... 8

ADC DelSig ... 8

CapSense ... 9

Digital Scope .. 9

Theory of Operation ... 9

Main_Task ... 9

<Demo>_Task .. 9

CapSense_Monitor_Task ... 10

Example – “NewDesign” ...10

Adding FreeRTOS to a PSoC Creator Project ..12

Getting the FreeRTOS Software ...12

Add FreeRTOS Files ...12

Build Settings ..13

Stack and Heap Settings ..13

Initialization Code ...14

RTOS Configuration ..14

Workspace Explorer with FreeRTOS ..15

v1.0 FreeRTOS on CY8CKIT-050 User Guide

Page 4 of 16 March 2014

Revision History ...16

Figures

Figure 1: PSoC 5LP Development Kit .. 5

Figure 2: USB programming/debug connector next to the 10-pin debug header 6

Figure 3: CapSense Buttons (pin P5_5 and P5_6) and Slider (pins P5_0..P5_4) 8

Figure 4: SW2 (pin P6_1) and SW3 (pin P15_5) ... 8

Figure 5: Connect pin P0_0 to VR ... 9

Figure 6: State transitions for Demo project ..10

Figure 7: State transitions for NewDesign project ...11

FreeRTOS on CY8CKIT-050 User Guide v1.0

 March 2014 Page 5 of 16

CY8CKIT-050 Kit
These example projects are designed to run on the CY8CKIT-050 (PSoC 5LP Development

Kit) from Cypress Semiconductor. A full description of the kit, along with more example

programs and ordering information, can be found at http://www.cypress.com/cy8ckit-050.

This kit is a development platform for the PSoC 5LP family of devices. It includes a

CY8C5868AXI-035LP part with 256kB on-chip flash memory and 64kB SRAM. The kit

hardware provides the following features.

 Power supply system

 Programming interface

 USB communications

 Boost convertor

 PSoC 5LP and related circuitry

 32-kHz crystal

 24-MHz crystal

 Port E (analog performance port) and port D (CapSense® or generic port)

 RS-232 communications interface

 Prototyping area

 Character LCD interface

 CapSense buttons and sliders

Figure 1: PSoC 5LP Development Kit

http://www.cypress.com/cy8ckit-050

v1.0 FreeRTOS on CY8CKIT-050 User Guide

Page 6 of 16 March 2014

Hardware Tools
Programming and debug is available through the following hardware tools.

 PSoC Creator with the on-board debug connection (USB)

 PSoC Creator with the Cypress MiniProg3 kit

Software Tools
The applications are compatible with the following software IDEs.

 PSoC Creator 3.0 and newer

Full source code is provided for all projects and you are encouraged to modify the designs to

learn and experiment with FreeRTOS on a PSoC 5LP device.

Compiler Toolchain

This document is included in two downloadable images – CY8CKIT-050-GNU and CY8CKIT-
050-MDK, which use the ARM GNU GCC 4.7.3 and ARM’s Microcontroller Developers Kit
compiler toolchain respectively.

CY8CKIT-042-GNU

In this package the ARM GNU GCC 4.7.3 is used to build all projects. This compiler is
automatically installed with PSoC Creator 3.0.

CY8CKIT-042-MDK

In this package the Microcontroller Developers Kit (MDK) compiler from ARM Ltd. is used to

build all projects. This compiler not included in the PSoC Creator product but is available for

download at https://www.keil.com/demo/eval/arm.htm.

Using PSoC Creator

To explore the applications in PSoC Creator open the workspace file “CY8CKIT-050-

GCC.cywrk” or “CY8CKIT-042-MDK.cywrk”. This workspace includes the following projects.

 Demo.cyprj

 NewDesign.cyprj

Programming/debugging is provided through either the on-board USB connector J1 or the

Cypress MiniProg3 debug adapter (not provided in the CY8CKIT-050 kit). Third-party debug

adapters cannot be used with PSoC Creator 3.0.

Figure 2: USB programming/debug connector, located next to the 10-pin debug header

https://www.keil.com/demo/eval/arm.htm

FreeRTOS on CY8CKIT-050 User Guide v1.0

 March 2014 Page 7 of 16

Board Support Package
PSoC 5LP is a unique device that combines an ARM Cortex-M3 CPU with arrays of

configurable analog and digital functionality. This allows PSoC to be programmed with an

amazing range (and amount) of peripheral functionality.

These examples include a generic configuration of the PSoC device that supports the

following functions and interfaces.

 2x SAR (successive approximation) ADCs (12-bit)

 Delta-Sigma ADC (20-bit)

 1x general purpose Voltage DAC (8-bit)

 2x Analog Comparators with 2x Voltage DACs (reference sources)

 I2C

 UART

 2x PWM (16-bit)

 2x Timers (32-bit)

 Character LCD

All of these functions are supported by a rich set of APIs, which are described in the

accompanying Board Support Package (BSP) document.

Board Setup

In order to run the applications, make the following hardware connections.

 Connect the 2x16 character LCD to header J8.

 Attach a jumper wire from P0_0 to the VR header, as shown in Figure 5, below.

Modifying the BSP

The BSP for PSoC devices is generated directly from the configuration of the device. When a

design is built in PSoC Creator, the APIs to interface with the peripherals are generated by

the tool. For example, if you create a design that uses an ADC, the APIs to start, stop and

read the ADC conversion results are automatically added to the project. As a result it is a

simple task to extend the BSP provided with these projects or to create your own from

scratch.

Launch PSoC Creator and open the NewDesign project. In the NewDesign.cycsh file you will

see a number of pages of peripheral functions, all of which are discussed in the BSP

document. Feel free to add new functions or change how the existing design works to suit

your needs. A simple re-build is all that is needed to re-generate the APIs and create your

own, custom BSP.

Example – “Demo”
This is a great place to start learning about FreeRTOS and PSoC. The demo shows off some

of the features of PSoC and the kit and how they can be managed and used in a multi-

tasking application. In particular, a CapSense monitoring task is used to show how multiple

tasks can be CapSense clients without repeating all the update/scan/check code.

v1.0 FreeRTOS on CY8CKIT-050 User Guide

Page 8 of 16 March 2014

Running the Demo

Download the demo and play with it before diving into the code. The program presents a set

of five demo applications (implemented as tasks) that can be selected from a simple menu

interface on the LCD. Use the CapSense buttons to browse the demos. Use button SW2 to

start a demo and SW3 to finish it. Some demos also make use of SW2 and the CapSense

buttons and sliders.

Figure 3: CapSense Buttons (pin P5_5 and P5_6) and Slider (pins P5_0..P5_4)

Figure 4: SW2 (pin P6_1) and SW3 (pin P15_5)

Glowing PWMs

This is the simplest demo. It actually requires no application code at all! A pair of PWMs

(“PWM_1” and “PWM_2”) are used to drive LED3 (pin P6_2) and LED4 (pin P6_3) such that

their intensities vary periodically.

The intensity variation is achieved by ANDing the output of a pair of PWMs with slightly

different periods. This causes a gradual change in the combined duty cycle of the output

signal. Note that for LED3, the results are ANDed and, for LED4, they are actually XORed.

These logical functions have truth tables that are the mirror of each other and so the effect

you see is that as one LED gets brighter the other dims, and vice versa.

ADC SAR

This demo uses one of the SAR ADCs on the PSoC device to measure the voltage across a

variable resistor on the board. The SAR used is “ADC_SAR_1”, which is connected to the

potentiometer via pin P6_5. Rotate the potentiometer to see the voltage update on the LCD.

Note that there is a second SAR ADC available in the device, connected to pin P0_1, which

is next to the breadboard area. Look for “ADC_SAR_2” in the BSP document for details on

how to use this ADC.

ADC DelSig

This is a similar demo to the ADC SAR, except it uses the Delta-Sigma ADC. “ADC_DelSig”

is connected to pin P0_0, near the breadboard area, so it is not dedicated to the

potentiometer. You can still use the potentiometer for the demo if you connect P0_0 to the

“VR” connection with a jumper wire.

FreeRTOS on CY8CKIT-050 User Guide v1.0

 March 2014 Page 9 of 16

Figure 5: Connect pin P0_0 to VR

CapSense

This demo asks you to “Touch Something!” Press the buttons and move your finger along the

slider to see the input displayed on the LCD.

Digital Scope

This is another bit of fun where we pretend the LCD is a digital oscilloscope. Press SW2 to

provide input to the scope and watch the display scroll by. You can vary the speed of the

scope by moving your finger along the CapSense slider.

Theory of Operation

The Demo project uses a message queue and event groups. The queue is used to share

CapSense input with multiple tasks. The events are logically associated with their specific

tasks and are an ideal way to schedule the execution of each demo from the task that

displays the demo “menu”. The application comprises the following tasks.

Main_Task – creates all the other tasks and displays the menu of demos

CapSense_Monitor_Task – periodically reads the CapSense input and posts it to a

queue

<Demo>_Task – the five tasks that implement the actual demos

Main_Task

This task is created in main() with a low priority. It runs when there is no demo active and the

CapSense task is not scanning. Main_Task starts by creating the CapSense queue, the

event groups, and then all the other tasks. There are two event groups. Main_Task_Event is

used to control Main_Task and contains a single event. Demo_Events contains an event for

each one of the tasks (the demo number defines the bit position of the event in the group).

Main_Task then prints user instructions to the LCD and enters its forever-loop. In the loop it

checks for a CapSense message and, if a button has been pressed, it updates the LCD with

the next demo name (moves up or down the list of demos). If the user presses SW2, to start

a demo, then the currently-displayed demo is started by signaling its task event.

Note that, to prevent Main_Task from running while a demo is suspended (for example, if the

demo executes a delay API), Main_Task immediately suspends itself by waiting on its own

task event. This prevents any contention for the LCD resource or the risk of two demos

running simultaneously.

<Demo>_Task

Each of the demos is implemented as a medium priority task. When they are created from

Main_Task, being a higher priority, they immediately execute. Obviously, the demos should

not all run at once and so the task code for each one waits on its own event and is blocked.

The demo tasks are, therefore, “released” by Main_Task when it signals the appropriate

event.

The demo code is, naturally, found in each of the demo’s forever-loops. Each one includes

appropriate start and stop code for the peripheral hardware used in the demo so that other

tasks can safely use the same resources (good neighbor policy).

v1.0 FreeRTOS on CY8CKIT-050 User Guide

Page 10 of 16 March 2014

When the user presses SW2, to stop a demo, the demo task responds by signaling the

Main_Task event. This makes Main_Task ready but does not let it run just yet because

Main_Task is low priority. The demo task then suspends itself by waiting on its own event

and Main_Task is finally free to run again. This synchronization of Main_Task and the demo

tasks is a classic “bilateral synchronization” where a pair of resources is used to ensure the

tasks are never running/ready at the same time.

CapSense_Monitor_Task

Capsense_Monitor_Task is the highest priority of the application tasks. It scans the buttons

and slider on the board and, if activity is detected, the event is posted to the queue. Tasks

that require input from CapSense simply ask for queue data. The task executes every 20ms,

which allows other tasks plenty of time to execute (without the user noticing that the

“application code” is not running) and is fast enough to be very responsive to user input on

the buttons and slider.

Each “packet” of CapSense data (union CS_PACKET defined in OS_Resources.h) is 32 bits

in size and so the queue’s payload is the actual CapSense data (rather than a pointer to a

buffer). This simplifies the code that has to interpret the data transferred.

Note that the “packet” is contained in a C union. The union comprises four 8-bit fields

overlaid with a 32-bit integer. The four 8-bit fields correspond to button0, button1, a flag

indicating slider activity, and the slider value. The 32-bit field enables easy extraction of the

packet data from the queue, without the need to copy all the 8-bit fields manually.

Figure 6: State transitions for Demo project

Example – “NewDesign”
This is a near-empty project that is ready for you to start developing your own applications. It

includes all the BSP files and start-up code for the RTOS. The demo code is just a single

task (“Main_Task”) that blinks an LED every second. Replace our two-line application with

more interesting code of your own to get started today!

FreeRTOS on CY8CKIT-050 User Guide v1.0

 March 2014 Page 11 of 16

Figure 7: State transitions for NewDesign project

v1.0 FreeRTOS on CY8CKIT-050 User Guide

Page 12 of 16 March 2014

Adding FreeRTOS to a PSoC Creator Project
The instructions above all assume the user starts from a PSoC Creator project with the

RTOS already set up. What if you wish to add an RTOS to an existing PSoC design? Follow

these instructions to add FreeRTOS to a project in PSoC Creator. Note that you can use

either MDK or GCC compilers, PSoC 4 or PSoC 5LP, and DEBUG or RELEASE

configurations.

Getting the FreeRTOS Software

These instructions apply to FreeRTOS v8.0.0. It can be downloaded from here:

http://sourceforge.net/projects/freertos/. The downloaded file is an executable ZIP – extract it

to a convenient location “near” your project directory.

Note that the FreeRTOS author(s) have done an excellent job of separating user and OS

files in their distribution. Also, they keep device-specifics (like communications drivers and

LEDs) to a minimum. As a result the “Source” directory in the installed SW contains all you

need to get FreeRTOS working (plus the configuration file discussed below) and there should

never be a need to modify those files. Indeed, if disk space is an issue, you might choose to

delete unnecessary compiler and architecture support.

Instructions on writing applications can be found here: http://www.freertos.org/RTOS.html

Add FreeRTOS Files

The following are guidelines, not hard requirements. You do need to add the source files to

the project or they will not build but include files are found through the build settings, so they

are optional. Cypress recommends adding everything, as described, so you can see all the

files (and learning about the OS becomes easier). You may also safely modify the structure

of the folders to suit your taste.

1. Create a “FreeRTOS” folder

 Add the C source files from FreeRTOS\Source

o croutine.c

o event_groups.c

o list.c

o queue.c

o tasks.c

o timers.c

2. Create an “include” folder under ”FreeRTOS”

 Add the C header files from FreeRTOS\Source\include

o croutine.h

o event_groups.h

o FreeRTOS.h

o list.h

http://sourceforge.net/projects/freertos/
http://www.freertos.org/RTOS.html

FreeRTOS on CY8CKIT-050 User Guide v1.0

 March 2014 Page 13 of 16

o mpu_wrappers.h

o portable.h

o projdefs.h

o queue.h

o semphr.h

o StackMacros.h

o task.h

o timers.h

3. Create a “portable” folder under ”FreeRTOS”

4. Create a “MemMang” folder under “portable”

 Add “heap_1.c” file1 from FreeRTOS\Source\MemMang

5. Create a compiler-architecture2 (e.g. “GCC-CM3” or “MDK-CM3”) folder under

“portable”

 Add the C source and header files from FreeRTOS\compiler3\architecture4

o port.c

o portmacro.h

Build Settings

6. Add the following directories to the compiler include path (use the appropriate

compiler and architecture choices for your project)

 <relative path>\FreeRTOS\Source\include

 <relative path>\FreeRTOS\Source\portable\<compiler>\<architecture>

Stack and Heap Settings

FreeRTOS defines its own heap and allocates task stacks from that. As a result it is usually

best to reduce the stack and heap settings in the PSoC Creator project. The stack is only

used until the RTOS starts (100 bytes is usually sufficient stack) and the heap is typically

unnecessary.

7. Set the Stack size to 100 bytes in the CYDWR file

8. Set the Heap size to 0 bytes in the CYDWR file

1
 There are 4 heap_?.c files. Each offers increasingly sophisticated support for memory allocation. For

a simple demo the heap_1.c file is adequate, but note that it does not support the reuse of heap
memory after the deletion of tasks or resources.

2
 The port of FreeRTOS can support GCC or the MDK compiler as well as PSoC 4 and PSoC 5LP. It

is recommended to use the following folder names: GCC-CM0, GCC-CM3, MDK-CM0 and MDK-CM3.
Note that the MDK files are actually in the RVDS directory.

3
 The compiler directories are “GCC” and “RVDS” (for the MDK compiler).

4
The architecture directories are “ARM-CM0” and “ARM-CM3”.

v1.0 FreeRTOS on CY8CKIT-050 User Guide

Page 14 of 16 March 2014

Initialization Code

In the main() function – or any other file / function that runs before you start the OS with

vTaskStartScheduler() – you need to add some initialization code.

9. Add a handler function for malloc fails (heap full)

void vApplicationMallocFailedHook(void)

{

 /* The heap space has been exceeded. */

 taskDISABLE_INTERRUPTS();

 while(1)

 {

 /* Do nothing - this is a placeholder for a breakpoint */

 }

}

10. Add a handler function for stack overflow

void vApplicationStackOverflowHook(xTaskHandle pxTask, signed char

*pcTaskName)

{

 /* The stack space has been exceeded for a task */

 taskDISABLE_INTERRUPTS();

 while(1)

 {

 /* Do nothing - this is a placeholder for a breakpoint */

 }

}

11. Add defines and declarations for the OS exception Handlers

/* Declaration of NVIC base vector for FreeRTOS exception handling */

#define CORTEX_INTERRUPT_BASE (16)

/* Declarations of the exception handlers for FreeRTOS */

extern void xPortPendSVHandler(void);

extern void xPortSysTickHandler(void);

extern void vPortSVCHandler(void);

12. Install the exception handlers

 /* Handler for Cortex Supervisor Call (SVC, formerly SWI) - address 11 */

 CyIntSetSysVector(CORTEX_INTERRUPT_BASE + SVCall_IRQn,

 (cyisraddress)vPortSVCHandler);

 /* Handler for Cortex PendSV Call - address 14 */

 CyIntSetSysVector(CORTEX_INTERRUPT_BASE + PendSV_IRQn,

 (cyisraddress)xPortPendSVHandler);

 /* Handler for Cortex SYSTICK - address 15 */

 CyIntSetSysVector(CORTEX_INTERRUPT_BASE + SysTick_IRQn,

 (cyisraddress)xPortSysTickHandler);

RTOS Configuration

The configuration of the RTOS is handled from a single header file that, unlike all other

FreeRTOS files, is unique to the project (so you are free to modify it to your project’s needs).

13. Add (or create) the attached FreeRTOSConfig.h file to the project under Header Files

FreeRTOS on CY8CKIT-050 User Guide v1.0

 March 2014 Page 15 of 16

Workspace Explorer with FreeRTOS

After the above steps your project should look a lot like this and be ready for you to launch

the RTOS from main() by creating tasks and calling vTaskStartScheduler().

v1.0 FreeRTOS on CY8CKIT-050 User Guide

Page 16 of 16 March 2014

Revision History

Version Changes Reason for Changes / Impact

1.0 New document Initial release

Note: the version number refers to the version of the demo package itself (the BSP, RTOS

port code and applications). Letter-level revisions – e.g. from 1.0 to 1.0a – are document-only

changes.

	Table of Contents
	Chapters
	Figures

	CY8CKIT-050 Kit
	Hardware Tools
	Software Tools
	Compiler Toolchain
	CY8CKIT-042-GNU
	CY8CKIT-042-MDK

	Using PSoC Creator

	Board Support Package
	Board Setup
	Modifying the BSP

	Example – “Demo”
	Running the Demo
	Glowing PWMs
	ADC SAR
	ADC DelSig
	CapSense
	Digital Scope

	Theory of Operation
	Main_Task
	<Demo>_Task
	CapSense_Monitor_Task

	Example – “NewDesign”
	Adding FreeRTOS to a PSoC Creator Project
	Getting the FreeRTOS Software
	Add FreeRTOS Files
	Build Settings
	Stack and Heap Settings
	Initialization Code
	RTOS Configuration
	Workspace Explorer with FreeRTOS

	Revision History

