FreeRTOS API Reference

Version 7.0.0 r0
4/19/2011 9:47:00 AM

Table of Contents

U] I = Vo = T 2
Lo Yo U1 TN T o 1= OO PPPPPPPPUPPPPNS 3
(7= 1= IR 1 [(1= [T [PPSR 4
Y ToTo (W1 TSR oo g 1=T | = LA o o R 5
LI TS O 1= 4o o S PESRS 5
D I TS =T T | SRR 5
D= TS (O =T LU UPRURPP PRIt 5
A L= T3 = 1= (PR 6
L2] S 0 o) OSSPSR 6
A= T3 == P EPRUR 6
A= 51 == 14U o PSSR 7
U QI] S 10T 11171 8
A LI TS R €10 14T = PP 9
A= T3 ST 1] o 11 Lo PP 9
A LI TSR LT U 1= O 10
VTASKRESUMEFTOMISR ..ceiiiiiiiei ittt ettt e e e e e e e e e s e ettt e e eeeeeeses s seeeseeeeeaeeeeeesesanssssnbeanneneeeenesannnnns 11
L2 5] LU (1= SO 11
D= TS T 0] (@ TU o | PPN 11
XTaSKGEtTICKCOUNTFTOMISRuiiiiiiiiie i ceeeee et et e e e e e e e s r e eeae e e s es s as e baa e aeeeaeeeeeen s snnsnnennnnes 11
(I 1] L= A [4] o T=T @ 1= 1] 11
L2123 T SRS 11
A= 1 S C L= LU T =0] = L 12
(VL= TS = U I = U = 12
RS 1=] N Lo I 1 = (o = TSP 12
UXTaSKGetStaCkHIGNWALEIMAIK.........c.iiii et e e e e e e e s e e s e st eaeeaeaeeeees e nnnnnes 13
XTaskCallApPlicatiONTASKHOOK.oiii ittt e et e s e s s s eaaeaaeaaeeeeeseeeannes 13
L= 1= 0o T 11 o) SRR 13
L6215 L 1 =1 I PO UPRPRPR 13
tASKENTER _CRITICAL ..eeiiiiiiii oottt mmm et e e e e e e e e ettt et e e eeeeeee e s e s st ataeeeaeaeaesesaaasssabbesreeaesaaeeesassnanssrnnnnens 13
1= 1S S I O 8 1L SRR 13
taSKDISABLE _INTERRUPTS ...ooiiiiii it ii ittt e e e e s e ettt e e et e e e e e e s e st aeeeeeeaeeseasnsnsntnsaneeenaeaeeeeesannnnnnnnes 14
taSKENABLE _INTERRUPTSoitiiiiiiiiiiie e ememr e e e s e ettt et e e e e e e s s st areeaaeaeeseasnsnsntntenneenaeaeeeeesanannnnnnes 14
vTaskStartScheduler
AV = TS = T 1S 1] =T (1] T OO PPN
A= T3 ST T o 1= T 12| SRR
D I 1 R L2010 =Y 2 S
FreeRTOS-MPU Specific
QI Y (O == 1 (=T 2 (S TS] £ 4 =T o OSSN 16
VTASKAIIOCAIEMPUREGIONScoiiiiiiiiiiiiittceeeee ettt s as e s e e e e aeeaeetaeeee et aeeseaeaesetesssasasss s aeaeeaeaaeaaaeeseresressennnnns 17
(O UL H = PP
D@ 10 [T =T T = P
(@ W L=TU = Y= T 0 o W0 o] o |
(@ NN I =T oo I o] = - Tod
D@ TN = TH =1 T PP SRSSURRPR
XQUEUEGENEICSENM ... iiiiiiiieiiiee ettt ee e eee et te et e s ee e e e e e e e e e eaaaaaaeeeeteeesassssstenstaan e s aneaeaaeaeeaaeaaanasaneeens
D@ U TCTU =T =T
XQUEBUEBRECEIVE .. .ot st 22242+ttt e e e e e et et ee e s eesaeeseaeeaeeaeeeaeeseee s e seese s e as s e e eaeneeaaeaenaeeans
xQueueGenericReceive
UXQUEUEMESSAGESWWAITING i iieiie e ee et eeeeeeeerat s s e e e s e e e e e e e e e eeee et aeeaeastaeetaetesssaase e ansaeeaeaeeaesaeeeeesssssnnnnannes 27
(VL@ U =R =T D TC L] (U 27
XQUEUESENATOFIONIFIOMISReiiiiiiie e e e e e e e e e e e e e et e et e e et e bbb s aeeeaaaeaaaas 27
XQUEUESENATOBACKFTOMISR.uiiiiii ittt s ae s ee e s e e e e aeeteeeeee e e asesaesesesssteast s aeeseeeeaesaeseseeseserenns 28
XQUEUESENAFTOMISR ...ttt e e e e e e e e aeeeaeete et aeesessteneenn s s 29

XQUEUEGENEINCSENUFTOMISR.ottt ettt e s e e s e e e e aeaaeeaaeae et eeeaeesaetbebban s e s eaeeeeeaaans 30
XQUEUERECEIVEFTOMISR ... e e e e e e e et e e e e e e e et e et e et et ae e ee e b e e e s e e eaaeaaaaaaeens 31
SEMAPNOIE / IMULEXES ...eeiieeeeeeiieit ettt et e e et e e e e e e s sttt ee et e eeeeeeas s saaaaaeeeeeaeeeees s s nteeaeteaneeaeeeeesnsnsnnnnaneeaeaaeeansnsnn 32
ST nF= o] alod (T 1= 1 0=T = = U/ 32
xSemaphoreTake
XSEMAPNOIrETAKERECUISIVE. iiiiiiiie et e et e e e e e e e ettt et et ettt e s e e e e e e e e e e e aeeaeeeeeeesesesassnnsnnsnnanes
S T= a =T o] a o] (=T 1 SRS
XSEMAPNOIEGIVERECUISIVEueeiiiiiii e e ceeeer e e e e e e e e e s ettt eeeteaeee s e s s s e bareraeaeaesesasasssssesaeeeeaaaeeesas s ansnrnnnnens
XSEMAaPhOrE@GIVEFTOMISRottt e e e e e e e e e e e st ee e e e eeasas s st eaae e e e eeaeeeeasansnnnsnanaeeeaananans
VSEMAPNOIECIEALEIMULEX. ... i iviiisietiittiieeamaamrettatteea s e s s e e e eeeeeaeteeetaeesaeeasaesesssasssns e aaeaeeaeaaetaeeseesssnennnnnenns
xSemaphoreCreateCounting
Yol 1A T I 001 £ TP PPPPPRTTT
XTIMEICTEALE ... ieeii ittt oottt ettt e et e e e e a4 oo aah bt b bttt eeee e e e easa b bt b eese et e e e e e e e oo e e nn bbb bbbeeeeeeanaeaeaanssnbbeneeas
0LV I T = = 1T =T o SR
XTIMEFISTIMEIACLIVEei ittt emmime ettt ettt e e ettt e e s et e e e sh b bt e e e st e et e e e ke bt e e e e san bt eeeeannneaeeas
D 1141 651 = T RO TP PP PPPPTTTP
D I 1= 5] (o S
D I L=T (@ = T To [T o =1 oo To RSOOSR UPRUPPRPPPRNS
XTHMEIDEIBLE ...ttt e ottt e e s e s e e e e e sh b bttt e e aa kb et e e e s b b et e e e ab b bt e e e e sabeeeeeannbneeeenan
XTIMEIRESEL. ...ttt ereer etk e oottt e o4 ket e e e bee e e s e ab b et e e e ek be et e e e o b be e e e e e ek bt e et e e anne e e e e enbe e eas
XTIMEISTAITFTOMISR ...ttt ettt et e e oo oo e e bbbttt et ee e e aeea s s ettt be bt e eeeeaaeesaaaasnbebeseeeeaaaaaeaaaasnnrnnes
TS (o] 1 (0T 101 5 S
xTimerChangePeriodFromISR
XTIMEIRESEIFTOMISR ...ttt ettt et e e e oo s e e st e e ettt et aee e e e e e aa e aabbbbebeeeeaeaeeeeeaaannreneaas
(10T (o101 11T O OO SO P PP PP PPPPPPI
xCoRoutineCreate
VCOROULINESCNEAUIE ...t ettt et ekttt ettt et e 2e 2 e s et e be bt e e e aeae e e s e e e snbebbaeeeeaeeaaesaaansnrnnes
(o3 B 17 3 PO PPPPP

Lo (@ 108 1 L] =1 | R
(o1 (018] L] R = T = O = AV PP
crQUEUE_SEND_FROM_ISR .
CrQUEUE_RECEIVE_FROM _ISR ...iiiiiiiiiiiiittt o sttt et aeaeaasssanssstatsaesaeaaaesesnssssssesaneeeeaeaesssesssnssssssneneeees 59
Data SIrUCTUIE DOCUMENTATION.uuiiitceeemme ettt e et ee ettt e e e eeeeea e eesee st e eeeeeee st eeeesssa s eesssaaaneeesesbsnasssseessnnnneeereres 62
COTCOROULINECONTIOIBIOCKcevvi ittt ettt e e e et e e e e e et et e e e e e e e aa e e e ss s eban e eeeeesaan s eeesesnnannnesessenen 62
(@ T8 11011 B 1= {1111 o PSSR 63
6] QIS (@0 T 11 (011 =] (oo T 64

DI I I 1 = PP 66
XMEMORY_REGION ..ottt st e e bbb e e s s b b e e e s s b b e e e e e s an e e e s s b e 67

Main Page

Task Creation

Task Control

Task Utilities

Kernel Control
FreeRTOS-MPU Specific
Queues

Semaphore / Mutexes
Software Timers
Co-routines

Module Index

Modules

Here is a list of all modules:
L=] (1 (== 11 o] o PSSP a..
L= 5] S 0] 1 U RRPPPPPPUPURPRRIS 6..
L2 5] S 1] PR SUS 11
(=T 1= IO o] o1 1 o] PR 13
Fre@RTOS-MPU SPECIIC ..uuuuutuiiiisii it e e eeeeet ettt ettt e e s e e e e e e e aaaaaaeeaees 16
(O LU= U PP PTTR 18
SEMAPNOTE / IMULEXESevveeieiieieeeees e ie ettt et e e e e e e s e s e sttt eeeeeeaeaesaasssstetereeeeeeeeeesssannsseennneeees 32
Software Timers
(70T {0 TU1 1] a1 SRS PRPPIN 83

Data Structure Index

Data Structures
Here are the data structures with brief descrigtion

cor COROULINECONEI OIBIOCK 1evvviieiriiitiiiiii it e e e ettt e s r e s e e e e e e e aaaeeeeeeeesesenneees 62
QUEUEDEFIMITION ittt ittt e e ettt e e e e e e s e bbbt e et e e e ea e e e e s e sabababbb et e e e e e e e e s nnnbbbbbeseeaeaaaeens 63
tSKTaskCONtrOIBIOCK 1oiieiieeiiiiiiiiiii i se s e et ee ettt s e e s s e s s e e e e e aaeaeseaeseeeseeesansrnnes 64
DI 1 S 65
b SN I 1 = PP PPPPPRP 66
XMEMORY REGION ittt ee e e e ee st e e e e e e e e e s sttt e be e e e e eaeaeesseaentntsbeseeaaaaassesannnnns 67
XIMINT LIST TTEM iiiiiiiiiiee e e s s sttt e et e e e e e e ssts e e e e aaeeaessa st st aeaeeeeeeeeeeesaaansrnneeeneeaeens 68
XTASK PARAMTERS ..ottt e ettt et e e e e et e e e ae e e e e e e e e bt bbb e e e e e e eaeeeeeennnnstereeeeens 69

XTIME QU e s e s e s e s bbb s e e e e e e e e e 70

Module Documentation

Task Creation

xTaskHandle
task. h

Type by which tasks are referenced. For examplallato xTaskCreate returns (via a pointer paramets
xTaskHandle variable that can then be used asaaneder to vTaskDelete to delete the task.

xTaskCreate

task. h
portBASE_TYPE xTaskCreate(
pdTASK_CODE pvTaskCode,
const char * const pcName,
unsigned short usStackDepth,
void *pvParameters,
unsigned portBASE_TYPE uxPriority,
xTaskHandle *pvCreatedTask
);

Create a new task and add it to the list of tésasare ready to run.

xTaskCreate() can only be used to create a taské#saunrestricted access to the entire microclhetnrmemory
map. Systems that include MPU support can alterslgti create an MPU constrained task using
xTaskCreateRestricted().

Parameters:
pvTaskCode Pointer to the task entry function. Tasks musini@emented to never return
(i.e. continuous loop).
pcName A descriptive name for the task. This is maindgd to facilitate debugging.
Max length defined by tskMAX_TASK_NAME_LEN - defaus$ 16.
usSackDepth The size of the task stack specified as the numwibeariables the stack can
hold - not the number of bytes. For example, ifsteek is 16 bits wide and
usStackDepth is defined as 100, 200 bytes willllseated for stack storage.
pvParameters Pointer that will be used as the parameter fertéisk being created.
uxPriority The priority at which the task should run. Systdahat include MPU support
can optionally create tasks in a privileged (systamade by setting bit
portPRIVILEGE_BIT of the priority parameter. Forarple, to create a
privileged task at priority 2 the uxPriority parameshould be set to (2 |
portPRIVILEGE_BIT).
pvCreatedTask Used to pass back a handle by which the creatddcian be referenced.
Returns:

pdPASS if the task was successfully created anddtia ready list, otherwise an error code defindbe file errors.
h

Example usage:
/I Task to be created.
void vTaskCode(void * pvParameters)
{
for(;;)

/I Task code goes here.
}
}

/I Function that creates a task.
void vOtherFunction(void)

{

static unsigned char ucParameterToPass;
xTaskHandle xHandle;

/I Create the task, storing the handle. Note tha t the passed parameter ucParameterToPass

/I must exist for the lifetime of the task, so in this case is declared static. If it was just an

/I an automatic stack variable it might no longer exist, or at least have been corrupted, by the tim e
/I the new task attempts to access it.

xTaskCreate(vTaskCode, "NAME", STACK_SIZE, &ucPa rameterToPass, tskIDLE_PRIORITY, &xHandle);

/I Use the handle to delete the task.
vTaskDelete(xHandle);

}

vTaskDelete

task. h
void vTaskDelete(xTaskHandle pxTask);

INCLUDE_vTaskDelete must be defined as 1 for thisction to be available. See the configurationisedbr
more information.

Remove a task from the RTOS real time kernels memagt. The task being deleted will be removed fatim
ready, blocked, suspended and event lists.

NOTE: The idle task is responsible for freeing kieenel allocated memory from tasks that have bedeted. It
is therefore important that the idle task is nainstd of microcontroller processing time if yourphgation
makes any calls to vTaskDelete (). Memory allocdtedhe task code is not automatically freed, dml&l be
freed before the task is deleted.

See the demo application file death.c for samptiedbat utilises vTaskDelete ().

Parameters:

pxTask The handle of the task to be deleted. PassinglNWuill cause the calling task
to be deleted.

Example usage:
void vOtherFunction(void)

xTaskHandle xHandle;

/I Create the task, storing the handle.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

/I Use the handle to delete the task.
vTaskDelete(xHandle);

}

Task Control

vTaskDelay

task. h
void vTaskDelay(portTickType xTicksToDelay);

Delay a task for a given number of ticks. The addiin@e that the task remains blocked depends onitkeaate.

The constant portTICK_RATE_MS can be used to cateuteal time from the tick rate - with the resiontof
one tick period.

INCLUDE_vTaskDelay must be defined as 1 for thisdiion to be available. See the configuration sector
more information.

vTaskDelay() specifies a time at which the taskhetsto unblock relative to the time at which vTaskly() is
called. For example, specifying a block period 6D lticks will cause the task to unblock 100 ticktera
vTaskDelay() is called. vTaskDelay() does not tfaeeprovide a good method of controlling the fregey of a
cyclical task as the path taken through the codewell as other task and interrupt activity, wiffeet the
frequency at which vTaskDelay() gets called anddfoee the time at which the task next executeg Se
vTaskDelayUntil() for an alternative API functiorsigned to facilitate fixed frequency executionddes this
by specifying an absolute time (rather than airadatme) at which the calling task should unblock.

Parameters:

| XTicksToDelay | The amount of time, in tick periods, that theingltask should block. \
Example usage:
void vTaskFunction(void * pvParameters)

{
/1 Block for 500ms.
const portTickType xDelay = 500 / portTICK_RATE_MS

for(;;)

/I Simply toggle the LED every 500ms, blocking b etween each toggle.
vToggleLED();
vTaskDelay(xDelay);

}

}

vTaskDelayUntil

task. h
void vTaskDelayUntil(portTickType *pxPreviousWake Time, portTickType xTimelncrement);

INCLUDE_vTaskDelayUntil must be defined as 1 fastfunction to be available. See the configuragention
for more information.

Delay a task until a specified time. This functicem be used by cyclical tasks to ensure a constatution
frequency.

This function differs from vTaskDelay () in one ionant aspect: vTaskDelay () will cause a tasklozhfor
the specified number of ticks from the time vTaskl)d) is called. It is therefore difficult to us@askDelay ()
by itself to generate a fixed execution frequensyttee time between a task starting to execute laaidtask
calling vTaskDelay () may not be fixed [the taskyntake a different path though the code betweds,aa may
get interrupted or preempted a different numbeinaés each time it executes].

Whereas vTaskDelay () specifies a wake time redatio the time at which the function is called,
vTaskDelayUntil () specifies the absolute (exaiatetat which it wishes to unblock.

The constant portTICK_RATE_MS can be used to cateuteal time from the tick rate - with the resiontof
one tick period.

Parameters:
pxPreviousWakeTi | Pointer to a variable that holds the time at whiahtask was last unblocked.
me The variable must be initialised with the curremtd prior to its first use (see

the example below). Following this the variabl@igomatically updated
within vTaskDelayUntil ().

XTimel ncrement The cycle time period. The task will be unblocletdime
*pxPreviousWakeTime + xTimelncrement. Calling vTBskayUntil with the
same xTimelncrement parameter value will causea$leto execute with a
fixed interface period.

Example usage:

/I Perform an action every 10 ticks.
void vTaskFunction(void * pvParameters)

portTickType xLastWakeTime;
const portTickType xFrequency = 10;

/I Initialise the xLastWakeTime variable with the
xLastWakeTime = xTaskGetTickCount ();
for(;;)

current time.

/I Wait for the next cycle.
vTaskDelayUntil(&LastWakeTime, xFrequency);

/I Perform action here.
}
}

uxTaskPriorityGet
task. h

unsigned portBASE_TYPE uxTaskPriorityGet(xTaskHan dle pxTask);

INCLUDE_xTaskPriorityGet must be defined as 1 fastfunction to be available. See the configuratieation
for more information.

Obtain the priority of any task.

Parameters:
pxTask Handle of the task to be queried. Passing a Nbiuhdle results in the priority
of the calling task being returned.
Returns:

The priority of pxTask.
Example usage:
void vAFunction(void)

xTaskHandle xHandle;

/I Create a task, storing the handle.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL,

...

tskIDLE_PRIORITY, &xHandle);

/I Use the handle to obtain the priority of the ¢ reated task.
/'t was created with tskIDLE_PRIORITY, but may have changed
I it itself.

if(uxTaskPriorityGet(xHandle) |= tskIDLE_PRIOR ITY)

/I The task has changed it's priority.
}

...

/'1s our priority higher than the created task?
if(uxTaskPriorityGet(xHandle) < uxTaskPriority Get(NULL))

/I Our priority (obtained using NULL handle) is
}
}

higher.

vTaskPrioritySet

task. h
void vTaskPrioritySet(xTaskHandle pxTask, unsigne d portBASE_TYPE uxNewPriority);

INCLUDE_vTaskPrioritySet must be defined as 1 fios function to be available. See the configuratieation
for more information.

Set the priority of any task.

A context switch will occur before the function uets if the priority being set is higher than thearently
executing task.

Parameters:
pxTask Handle to the task for which the priority is bgiget. Passing a NULL handle
results in the priority of the calling task beirg.s
uxNewPriority The priority to which the task will be set.

Example usage:
void vAFunction(void)

xTaskHandle xHandle;

/I Create a task, storing the handle.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

...

/I Use the handle to raise the priority of the cr eated task.
vTaskPrioritySet(xHandle, tskIDLE_PRIORITY + 1) ;

...

/I Use a NULL handle to raise our priority to the same value.
vTaskPrioritySet(NULL, tskiIDLE_PRIORITY + 1);
}

vTaskSuspend

task. h
void vTaskSuspend(xTaskHandle pxTaskToSuspend);

INCLUDE_vTaskSuspend must be defined as 1 for filnistion to be available. See the configuratiortisac
for more information.

Suspend any task. When suspended a task will mgeany microcontroller processing time, no mattkat its
priority.

Calls to vTaskSuspend are not accumulative - aling vTaskSuspend () twice on the same task atily
requires one call to vTaskResume () to ready tepended task.

Parameters:

pxTaskToSuspend | Handle to the task being suspended. Passing d_Midhdle will cause the
calling task to be suspended.

Example usage:
void vAFunction(void)

xTaskHandle xHandle;

/I Create a task, storing the handle.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

...

/I Use the handle to suspend the created task.
vTaskSuspend(xHandle);

...

/I The created task will not run during this peri od, unless
/I another task calls vTaskResume(xHandle).

...

/I Suspend ourselves.
vTaskSuspend(NULL);

/I We cannot get here unless another task calls v TaskResume
/I with our handle as the parameter.

}

vTaskResume
task. h

void vTaskResume(xTaskHandle pxTaskToResume);

INCLUDE_vTaskSuspend must be defined as 1 forfinigtion to be available. See the configuratiortieac
for more information.

Resumes a suspended task.

A task that has been suspended by one of more tcallaskSuspend () will be made available for fngn
again by a single call to vTaskResume ().
Parameters:

| pxTaskToResume | Handle to the task being readied.

Example usage:
void vVAFunction(void)

xTaskHandle xHandle;

/I Create a task, storing the handle.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle);

...

/I Use the handle to suspend the created task.
vTaskSuspend(xHandle);

...

/I The created task will not run during this peri od, unless
/I another task calls vTaskResume(xHandle).

...

/I Resume the suspended task ourselves.
vTaskResume(xHandle);

/I The created task will once again get microcont roller processing
/l time in accordance with it priority within the system.
}

10

vTaskResumeFromISR
task. h

void xTaskResumeFromISR(xTaskHandle pxTaskToResum e);

INCLUDE_xTaskResumeFromISR must be defined as thisrfunction to be available. See the configorati
section for more information.

An implementation of vTaskResume() that can besddilom within an ISR.

A task that has been suspended by one of more tcallaskSuspend () will be made available for fngn
again by a single call to xTaskResumeFromISR ().

Parameters:
| pxTaskToResume | Handle to the task being readied.

Task Utilities

xTaskGetTickCount

task. h
portTickType xTaskGetTickCount(void);

Returns:
The count of ticks since vTaskStartScheduler wiedta

xTaskGetTickCountFromISR

task. h
portTickType xTaskGetTickCountFromISR(void);

Returns:
The count of ticks since vTaskStartScheduler wiedta

This is a version of xTaskGetTickCount() that ifes@ be called from an ISR - provided that porkTigpe is
the natural word size of the microcontroller beirsed or interrupt nesting is either not supportedab being
used.

uxTaskGetNumberOfTasks
task. h

unsigned short uxTaskGetNumberOfTasks(void);

Returns:

The number of tasks that the real time kernel isetiily managing. This includes all ready, blocked suspended
tasks. A task that has been deleted but not yetifog the idle task will also be included in theito

vTaskList

task. h
void vTaskList(char *pcWriteBuffer);

configUSE_TRACE_FACILITY must be defined as 1 fbist function to be available. See the configuration
section for more information.

11

NOTE: This function will disable interrupts for ithiration. It is not intended for normal applicatimntime use
but as a debug aid.

Lists all the current tasks, along with their catrstate and stack usage high water mark.
Tasks are reported as blocked ('B"), ready ('Rlgtdd ('D") or suspended ('S").

Parameters:

pcWriteBuffer A buffer into which the above mentioned detaill ke written, in ascii form.
This buffer is assumed to be large enough to conkes generated report.
Approximately 40 bytes per task should be suffitien

vTaskGetRunTimeStats

task. h
void vTaskGetRunTimeStats(char *pcWriteBuffer);

configGENERATE_RUN_TIME_STATS must be defined a®rthis function to be available. The application
must also then provide definitions for portCONFIGEIRIMER _FOR_RUN_TIME_STATS() and
portGET_RUN_TIME_COUNTER_VALUE to configure a pdngral timer/counter and return the timers
current count value respectively. The counter shoel at least 10 times the frequency of the ticknto

NOTE: This function will disable interrupts for itkiration. It is not intended for normal applicatimntime use
but as a debug aid.

Setting configGENERATE_RUN_TIME_STATS to 1 will idsin a total accumulated execution time being
stored for each task. The resolution of the accatadl time value depends on the frequency of thertim
configured by the portCONFIGURE_TIMER_FOR_RUN_TIMETATS() macro. Calling
vTaskGetRunTimeStats() writes the total executioretof each task into a buffer, both as an absalatent
value and as a percentage of the total system taedime.

Parameters:
pcWriteBuffer A buffer into which the execution times will beitten, in ascii form. This
buffer is assumed to be large enough to contailgénerated report.
Approximately 40 bytes per task should be suffitien
vTaskStartTrace
task. h
void vTaskStartTrace(char * pcBuffer, unsigned po rtBASE_TYPE uxBufferSize);

Starts a real time kernel activity trace. The triags the identity of which task is running when.

The trace file is stored in binary format. A sepaf20S utility called convtrce.exe is used to cohtids into a
tab delimited text file which can be viewed andtfgld in a spread sheet.

Parameters:
pcBuffer The buffer into which the trace will be written.
ulBufferSize The size of pcBuffer in bytes. The trace will tnoe until either the buffer in
full, or ulITaskEndTrace () is called.
usTaskEndTrace
task. h

unsigned long ulTaskEndTrace(void);

Stops a kernel activity trace. See vTaskStartT¢ace

12

Returns:
The number of bytes that have been written intdrthee buffer.

uxTaskGetStackHighWaterMark

task.h
unsigned portBASE_TYPE uxTaskGetStackHighWaterMark (xTaskHandle xTask);

INCLUDE_uxTaskGetStackHighWaterMark must be setltin FreeRTOSConfig.h for this function to be
available.

Returns the high water mark of the stack associatuxTask. That is, the minimum free stack spdee has
been (in words, so on a 32 bit machine a value afehns 4 bytes) since the task started. The snthker
returned number the closer the task has come tdlawing its stack.

Parameters:
XTask Handle of the task associated with the stacletolecked. Set xTask to NULL
to check the stack of the calling task.
Returns:

The smallest amount of free stack space theredws (n bytes) since the task referenced by xTaskareated.

xTaskCallApplicationTaskHook

task.h
portBASE_TYPE xTaskCallApplicationTaskHook(xTaskH andle xTask, pdTASK_HOOK_CODE pxHookFunction);

Calls the hook function associated with xTask. iPgssTask as NULL has the effect of calling the Rimng
tasks (the calling task) hook function.

pvParameter is passed to the hook function fotable to interpret as it wants.

Kernel Control

taskYIELD
task. h
Macro for forcing a context switch.

taskENTER_CRITICAL
task. h

Macro to mark the start of a critical code regiBneemptive context switches cannot occur when éniteal
region.

NOTE: This may alter the stack (depending on thigide implementation) so must be used with care!

taskEXIT_CRITICAL
task. h

Macro to mark the end of a critical code regioredPnptive context switches cannot occur when initecalr
region.

NOTE: This may alter the stack (depending on thégjpte implementation) so must be used with care!

13

taskDISABLE_INTERRUPTS
task. h

Macro to disable all maskable interrupts.

taskENABLE_INTERRUPTS
task. h

Macro to enable microcontroller interrupts.

vTaskStartScheduler

task. h
void vTaskStartScheduler(void);

Starts the real time kernel tick processing. Aéting the kernel has control over which tasksexecuted and
when. This function does not return until an exiegutask calls vTaskEndScheduler ().

At least one task should be created via a calllaskCreate () before calling vTaskStartSchedulerife idle
task is created automatically when the first agpion task is created.

See the demo application file main.c for an examplereating tasks and starting the kernel.
Example usage:
void vAFunction(void)

/I Create at least one task before starting the k ernel.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL);

/I Start the real time kernel with preemption.
vTaskStartScheduler ();

/I Will not get here unless a task calls vTaskEnd Scheduler ()

}

vTaskEndScheduler

task. h
void vTaskEndScheduler(void);

Stops the real time kernel tick. All created tasiid be automatically deleted and multitasking Iieit

preemptive or cooperative) will stop. Executionrtltesumes from the point where vTaskStartSchedulsas
called, as if vTaskStartScheduler () had just regdr

See the demo application file main. ¢ in the der@adRectory for an example that uses vTaskEndSdaedu

vTaskEndScheduler () requires an exit functiongalefined within the portable layer (see vPortEm#8aler ()
in port. ¢ for the PC port). This performs hardwspecific operations such as stopping the kerokl ti

vTaskEndScheduler () will cause all of the resosirabocated by the kernel to be freed - but wilt free
resources allocated by application tasks.

Example usage:
void vTaskCode(void * pvParameters)

{
for(;;)
/I Task code goes here.

/I At some point we want to end the real time ke

rnel processing
/'so call ...

14

vTaskEndScheduler ();

}

}

void vAFunction(void)
/I Create at least one task before starting the k ernel.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL);
/I Start the real time kernel with preemption.
vTaskStartScheduler ();
/I Will only get here when the vTaskCode () task has called
/I vTaskEndScheduler (). When we get here we are back to single task
/I execution.

}

vTaskSuspendAll

task. h

void vTaskSuspendAll(void);

Suspends all real time kernel activity while keggiimterrupts (including the kernel tick) enabled.

After calling vTaskSuspendAll () the calling taskilveontinue to execute without risk of being swappout
until a call to xTaskResumeAll () has been made.

API functions that have the potential to causerged switch (for example, vTaskDelayUntil(), xQaSend(),
etc.) must not be called while the scheduler ipsnded.

Example usage:
void vTaskl(void * pvParameters)

{
for(;;)
/I Task code goes here.

...

/I At some point the task wants to perform a lon g operation during
// which it does not want to get swapped out. | t cannot use

/l taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
/l operation may cause interrupts to be missed - including the

/1 ticks.

/I Prevent the real time kernel swapping out the task.

vTaskSuspendAll ();

/I Perform the operation here. There is no need to use critical
Il sections as we have all the microcontroller p rocessing time.
/l During this time interrupts will still operat e and the kernel

/I tick count will be maintained.
...

/I The operation is complete. Restart the kerne
xTaskResumeAll ();

}
}

xTaskResumeAll
task. h

char xTaskResumeAll(void);

15

Resumes real time kernel activity following a a¢alvTaskSuspendAll (). After a call to vTaskSusp&lh() the
kernel will take control of which task is executiagany time.

Returns:

If resuming the scheduler caused a context switeh pdTRUE is returned, otherwise pdFALSE is regdrn
Example usage:

void vTask1(void * pvParameters)
{

for(;;)

/I Task code goes here.

...

/I At some point the task wants to perform a lon g operation during
// which it does not want to get swapped out. | t cannot use

Il taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
/I operation may cause interrupts to be missed - including the

/1 ticks.

/I Prevent the real time kernel swapping out the task.
vTaskSuspendAll ();

/I Perform the operation here. There is no need to use critical

/ sections as we have all the microcontroller p rocessing time.

/I During this time interrupts will still operat e and the real

/Il time kernel tick count will be maintained.

...

/I The operation is complete. Restart the kerne |. We want to force

/I a context switch - but there is no point if r esuming the scheduler
/I caused a context switch already.

if(!xTaskResumeAll ())

{
taskYIELD ();

FreeRTOS-MPU Specific

xTaskCreateRestricted
task. h

portBASE_TYPE xTaskCreateRestricted(xTaskParameters *pxTaskDefinition, xTaskHandle *pxCreatedTask);

xTaskCreateRestricted() should only be used iresysthat include an MPU implementation.

Create a new task and add it to the list of tals&asdre ready to run. The function parameters defie memory
regions and associated access permissions allaretieel task.

Parameters:

pxTaskDefinition Pointer to a structure that contains a membeedch of the normal
xTaskCreate() parameters (see the xTaskCreate(Yi@d®Rimentation) plus an
optional stack buffer and the memory region ddfini.

pxCreatedTask Used to pass back a handle by which the creatédcan be referenced.
Returns:

pdPASS if the task was successfully created anddtida ready list, otherwise an error code defindbe file errors.
h

16

Example usage:

/I Create an xTaskParameters structure that defines
static const xTaskParameters xCheckTaskParameters =

vATask, // pvTaskCode - the function that impleme
"ATask", // pcName - just a text name for the task
100, // usStackDepth - the stack size DEFINED IN
NULL, // pvParameters - passed into the task func
(1UL | portPRIVILEGE_BIT),// uxPriority - task p
run in a privileged state.

cStackBulffer,// puxStackBuffer - the buffer to be

/I xRegions - Allocate up to three separate memory
/I the task, with appropriate access permissions.

/I different memory alignment requirements - refer
/I for full information.

/I Base address Length Parameters
{ cReadWriteArray, 32, portMPU_REGION_R
{ cReadOnlyArray, 32, portMPU_REGION_RE
{ cPrivilegedOnlyAccessArray, 128, portMPU_
}
h

int main(void)
xTaskHandle xHandle;

/I Create a task from the const structure defined

/I is requested (the second parameter is not NULL)

/I demonstration purposes as its not actually used
xTaskCreateRestricted(&xRegTest1Parameters, &xHan

/I Start the scheduler.
vTaskStartScheduler();

/I Will only get here if there was insufficient me
/I task.

for(;;);

}

vTaskAllocateMPURegions

task. h
void vTaskAllocateMPURegions(xTaskHandle xTask, c

the task to be created.

nts the task.

to assist debugging.

WORDS.

tion as the function parameters.

riority, set the portPRIVILEGE_BIT if the task shou

used as the task stack.
regions for access by

Different processors have
to the FreeRTOS documentation

EAD_WRITE },
AD_ONLY },
REGION_PRIVILEGED_READ_WRITE }

above. The task handle
but in this case just for

dle);

mory to create the idle

onst xMemoryRegion * const pxRegions);

Memory regions are assigned to a restricted tasknvthe task is created by a call to xTaskCreateiRiest().
These regions can be redefined using vTaskAllocBtdRegions().

Parameters:
xTask The handle of the task being updated.
xRegions A pointer to an xMemoryRegion structure that eamg the new memory
region definitions.

Example usage:

/I Define an array of xMemoryRegion structures that
/I allowing read/write access for 1024 bytes starti

/I ucOneKByte array. The other two of the maximum
/I unused so set to zero.

configures an MPU region
ng at the beginning of the
3 definable regions are

static const xMemoryRegion xAltRegions[portNUM_CONFIGURABLE_REGIONS | =

// Base address Length Parameters

{ ucOneKByte, 1024, portMPU_REGION_READ_WRITE },
{0, 0, 0},

{0, 0, 0}

h

17

void vATask(void *pvParameters)

/I This task was created such that it has access t o certain regions of

/ memory as defined by the MPU configuration. At some point it is

/Il desired that these MPU regions are replaced wit h that defined in the

/I xAltRegions const struct above. Use a call to vTaskAllocateMPURegions()
// for this purpose. NULL is used as the task han dle to indicate that this
/I function should modify the MPU regions of the ¢ alling task.
vTaskAllocateMPURegions(NULL, xAltRegions);

/I Now the task can continue its function, but fro m this point on can only
/I access its stack and the ucOneKByte array (unle ss any other statically

/I defined or shared regions have been declared el sewhere).

}

Queues

XQueueCreate

queue. h

xQueueHandle xQueueCreate(
unsigned portBASE_TYPE uxQueuelength,
unsigned portBASE_TYPE uxltemSize

)i

Creates a new queue instance. This allocates dhegst required by the new queue and returns a éémdthe
queue.

Parameters:
uxQueuel ength The maximum number of items that the queue categn
uxltemSze The number of bytes each item in the queue efguire. ltems are queued by
copy, not by reference, so this is the number tédyhat will be copied for
each posted item. Each item on the queue mustebsatne size.
Returns:

If the queue is successfully create then a hawdiee newly created queue is returned. If the qeeneot be created
then 0 is returned.

Example usage:
struct AMessage

char ucMessagelD;

char ucData[20 |;

h

void vATask(void *pvParameters)

xQueueHandle xQueuel, xQueue2;

/I Create a queue capable of containing 10 unsigne d long values.
XQueuel = xQueueCreate(10, sizeof(unsigned long));

if(xQueuel ==0)

/I Queue was not created and must not be used.

}

/I Create a queue capable of containing 10 pointer s to AMessage structures.
/I These should be passed by pointer as they conta in a lot of data.

XQueue2 = xQueueCreate(10, sizeof(struct AMessag e*));

if(xQueue2 ==0)

/I Queue was not created and must not be used.

18

}

/I ... Rest of task code.

XxQueueSendToFront

queue. h

portBASE_TYPE xQueueSendToFront(
xQueueHandle xQueue,
const void * pvitemToQueue,
portTickType xTicksToWait

This is a macro that calls xQueueGenericSend().

Post an item to the front of a queue. The itemusugd by copy, not by reference. This function rmagtbe

called from an interrupt service routine. See x@8andFromISR () for an alternative which may bel liisean
ISR.

Parameters:
xQueue The handle to the queue on which the item istpdsted.
pvitemToQueue A pointer to the item that is to be placed ondheue. The size of the items

the queue will hold was defined when the queuea@ated, so this many
bytes will be copied from pvitemToQueue into thege storage area.
XTicksToWait The maximum amount of time the task should bleeking for space to
become available on the queue, should it alreadulbéelrhe call will return
immediately if this is set to 0 and the queue Ik Tthe time is defined in tick
periods so the constant portTICK_RATE_MS shouldibed to convert to real
time if this is required.

Returns:

pdTRUE if the item was successfully posted, otheevarrQUEUE_FULL.
Example usage:
struct AMessage

{

char ucMessagelD;
char ucData][20 |;

} xMessage;

unsigned long ulVar = 10UL;
void vATask(void *pvParameters)

xQueueHandle xQueuel, xQueue2;
struct AMessage *pxMessage;

/I Create a queue capable of containing 10 unsigne d long values.

XQueuel = xQueueCreate(10, sizeof(unsigned long));

/I Create a queue capable of containing 10 pointer s to AMessage structures.
/I These should be passed by pointer as they conta in a lot of data.

XQueue2 = xQueueCreate(10, sizeof(struct AMessag e*));

...

if(xQueuel '=0)

/I Send an unsigned long. Wait for 10 ticks for space to become

/I available if necessary.

if(xQueueSendToFront(xQueuel, (void *) &ulVar , (portTickType) 10) != pdPASS)
/I Failed to post the message, even after 10 tic ks.

}

19

}
if(xQueue2 !=0)

/I Send a pointer to a struct AMessage object. D on't block if the

/I queue is already full.

pxMessage = & xMessage;

xQueueSendToFront(xQueue2, (void *) &pxMessage , (portTickType) 0);

}

/I ... Rest of task code.

xQueueSendToBack

queue. h

portBASE_TYPE xQueueSendToBack(
xQueueHandle xQueue,
const void * pvitemToQueue,
portTickType xTicksToWait

This is a macro that calls xQueueGenericSend().

Post an item to the back of a queue. The item &uead by copy, not by reference. This function nmagtbe
called from an interrupt service routine. See x@8andFromISR () for an alternative which may bel tuisexn
ISR.

Parameters:
xQueue The handle to the queue on which the item istpdsted.
pvitemToQueue A pointer to the item that is to be placed ondheue. The size of the items

the queue will hold was defined when the queuea@ated, so this many
bytes will be copied from pvitemToQueue into thege storage area.
XTicksToWait The maximum amount of time the task should bleeking for space to
become available on the queue, should it alreadulbéelrhe call will return
immediately if this is set to 0 and the queue Ik Tthe time is defined in tick
periods so the constant portTICK_RATE_MS shouldibed to convert to real
time if this is required.

Returns:

pdTRUE if the item was successfully posted, otheevarrQUEUE_FULL.
Example usage:
struct AMessage

{

char ucMessagelD;
char ucData] 20 |;

} xMessage;

unsigned long ulVar = 10UL;
void vATask(void *pvParameters)

xQueueHandle xQueuel, xQueue2;
struct AMessage *pxMessage;

/I Create a queue capable of containing 10 unsigne d long values.

XQueuel = xQueueCreate(10, sizeof(unsigned long));

/I Create a queue capable of containing 10 pointer s to AMessage structures.
/I These should be passed by pointer as they conta in a lot of data.

XQueue2 = xQueueCreate(10, sizeof(struct AMessag e*));

...

20

if(xQueuel '=0)

/I Send an unsigned long. Wait for 10 ticks for

/l available if necessary.

if(xQueueSendToBack(xQueuel, (void *) &ulVar,
{

/I Failed to post the message, even after 10 tic
}
}

if(xQueue2 '=0)

/I Send a pointer to a struct AMessage object. D

/I queue is already full.

pxMessage = & xMessage;

xQueueSendToBack(xQueue2, (void *) &pxMessage,
}

/I ... Rest of task code.

xQueueSend

queue. h

portBASE_TYPE xQueueSend(
xQueueHandle xQueue,

const void * pvitemToQueue,

portTickType xTicksToWait

);

space to become
(portTickType) 10) != pdPASS)

ks.

on't block if the

(portTickType) 0);

This is a macro that calls xQueueGenericSend(s Ihcluded for backward compatibility with versmof
FreeRTOS.org that did not include the xQueueSendirif and xQueueSendToBack() macros. It is eqeival

to xQueueSendToBack().

Post an item on a queue. The item is queued by, caypypy reference. This function must not be chfftem an
interrupt service routine. See xQueueSendFromIS& @n alternative which may be used in an ISR.

Parameters:
xQueue The handle to the queue on which the item istpdsted.
pvlitemToQueue A pointer to the item that is to be placed ondheue. The size of the items

the queue will hold was defined when the queueaxaated, so this many
bytes will be copied from pvitemToQueue into thege storage area.

xTicksToWait The maximum amount of time the task should blweking for space to
become available on the queue, should it alreadulbéelrhe call will return
immediately if this is set to 0 and the queue Ik Tthe time is defined in tick
periods so the constant portTICK_RATE_MS shouldibed to convert to real
time if this is required.

Returns:

pdTRUE if the item was successfully posted, otheeveirrQUEUE_FULL.

Example usage:
struct AMessage

char ucMessagelD;

char ucData[20 |;

} XMessage;

unsigned long ulVar = 10UL;

void vATask(void *pvParameters)

xQueueHandle xQueuel, xQueue2;
struct AMessage *pxMessage;

21

/I Create a queue capable of containing 10 unsigne d long values.

XQueuel = xQueueCreate(10, sizeof(unsigned long));

/I Create a queue capable of containing 10 pointer s to AMessage structures.
/I These should be passed by pointer as they conta in a lot of data.

XQueue2 = xQueueCreate(10, sizeof(struct AMessag e*));

...

if(xQueuel '=0)

/I Send an unsigned long. Wait for 10 ticks for space to become

/l available if necessary.

if(xQueueSend(xQueuel, (void *) &ulVar, (por tTickType) 10) != pdPASS)
/I Failed to post the message, even after 10 tic ks.

}

}

if(xQueue2 !=0)

/I Send a pointer to a struct AMessage object. D on't block if the

/I queue is already full.

pxMessage = & xMessage;

XxQueueSend(xQueue2, (void *) &pxMessage, (por tTickType) 0);

/I ... Rest of task code.

xQueueGenericSend

queue. h

portBASE_TYPE xQueueGenericSend(
xQueueHandle xQueue,
const void * pvitemToQueue,
portTickType xTicksToWait

)i

portBASE_TYPE xCopyPosition

It is preferred that the macros xQueueSend(), x@8endToFront() and xQueueSendToBack() are usddde p
of calling this function directly.

Post an item on a queue. The item is queued by, caypypy reference. This function must not be chftem an
interrupt service routine. See xQueueSendFromIS& @n alternative which may be used in an ISR.

Parameters:

xQueue

The handle to the queue on which the item istpdsted.

pvlitemToQueue

A pointer to the item that is to be placed ondheue. The size of the items
the queue will hold was defined when the queuea@ated, so this many
bytes will be copied from pvitemToQueue into thege storage area.

xTicksToWait

The maximum amount of time the task should blweking for space to
become available on the queue, should it alreadulbéelrhe call will return
immediately if this is set to 0 and the queue Ik fthe time is defined in tick
periods so the constant portTICK_RATE_MS shouldibed to convert to rea
time if this is required.

xCopyPosition

Can take the value queueSEND_TO_BACK to placétéme at the back of
the queue, or queueSEND_TO_FRONT to place the dttetime front of the

l

queue (for high priority messages).

Returns:

pdTRUE if the item was successfully posted, otheeveirrQUEUE_FULL.

Example usage:

22

struct AMessage

char ucMessagelD;
char ucData] 20 |;
} xMessage;

unsigned long ulVar = 10UL;
void vATask(void *pvParameters)

XxQueueHandle xQueuel, xQueue2;
struct AMessage *pxMessage;

/I Create a queue capable of containing 10 unsigne
XQueuel = xQueueCreate(10, sizeof(unsigned long

/I Create a queue capable of containing 10 pointer
/I These should be passed by pointer as they conta
XQueue2 = xQueueCreate(10, sizeof(struct AMessag

...
if(xQueuel !=0)
{

/I Send an unsigned long. Wait for 10 ticks for
/l available if necessary.
if(xQueueGenericSend(xQueuel, (void *) &ulVar

/l Failed to post the message, even after 10 tic

}
}

if(xQueue2 '=0)

/I Send a pointer to a struct AMessage object. D

/I queue is already full.

pxMessage = & xMessage;

XxQueueGenericSend(xQueue2, (void *) &pxMessage

}

/I ... Rest of task code.

xQueuePeek

queue. h

portBASE_TYPE xQueuePeek(
XQueueHandle xQueue,
void *pvBulffer,
portTickType xTicksToWait

d long values.

)

s to AMessage structures.
in a lot of data.

e*))

space to become
, (portTickType) 10, queueSEND_TO_BACK) != pdPAS

ks.

on't block if the

, (portTickType) 0, queueSEND_TO_BACK);

This is a macro that calls the xQueueGenericRef€iwaction.

Receive an item from a queue without removing theifrom the queue. The item is received by copy so
buffer of adequate size must be provided. The nurbéytes copied into the buffer was defined witlea

queue was created.

Successfully received items remain on the queuevifobe returned again by the next call, or a dall

xQueueReceive().

This macro must not be used in an interrupt semaaéne.

Parameters:
pxQueue The handle to the queue from which the item isg@eceived.
pvBuffer Pointer to the buffer into which the receivedriteill be copied.
xTicksToWait The maximum amount of time the task should bleeking for an item to

23

receive should the queue be empty at the timeeo€#t. The time is defined
in tick periods so the constant portTICK_RATE_M$uskd be used to conver
to real time if this is required. xQueuePeek() weturn immediately if
xTicksToWait is 0 and the queue is empty.

Returns:

pdTRUE if an item was successfully received from queue, otherwise pdFALSE.
Example usage:
struct AMessage
char ucMessagelD;
char ucData[20 |;
} XMessage;
xQueueHandle xQueue;

/I Task to create a queue and post a value.
void vATask(void *pvParameters)

struct AMessage *pxMessage;

/I Create a queue capable of containing 10 pointer s to AMessage structures.
/I These should be passed by pointer as they conta in a lot of data.
XQueue = xQueueCreate(10, sizeof(struct AMessage *));

if(xQueue ==0)

/I Failed to create the queue.

}
...

/I Send a pointer to a struct AMessage object. Do n't block if the
/I queue is already full.

pxMessage = & xMessage;

xQueueSend(xQueue, (void *) &pxMessage, (portT ickType) 0);

/I ... Rest of task code.

}

/I Task to peek the data from the queue.
void vADifferentTask(void *pvParameters)

struct AMessage *pxRxedMessage;

if(xQueue '=0)

/I Peek a message on the created queue. Block fo r 10 ticks if a

/I message is not immediately available.

if(xQueuePeek(xQueue, &(pxRxedMessage), (por tTickType) 10))
/I pcRxedMessage now points to the struct AMessa ge variable posted
/I by vVATask, but the item still remains on the queue.

}

}

/I ... Rest of task code.

xQueueReceive

queue. h

portBASE_TYPE xQueueReceive(
xQueueHandle xQueue,
void *pvBulffer,
portTickType xTicksToWait

This is a macro that calls the xQueueGenericRef€divaction.
Receive an item from a queue. The item is recebyedopy so a buffer of adequate size must be peavidhe

number of bytes copied into the buffer was defimben the queue was created.

Successfully received items are removed from tleigu
This function must not be used in an interrupt iservoutine. See xQueueReceiveFromISR for an @t

that can.
Parameters:
pxQueue The handle to the queue from which the item isg@eceived.
pvBuffer Pointer to the buffer into which the receivedriteill be copied.
xTicksToWait The maximum amount of time the task should bleeking for an item to
receive should the queue be empty at the timeeo€#tl. xQueueReceive()
will return immediately if xTicksToWait is zero arlde queue is empty. The
time is defined in tick periods so the constantp@@K_RATE_MS should be
used to convert to real time if this is required.
Returns:

pdTRUE if an item was successfully received from glaeue, otherwise pdFALSE.

Example usage:
struct AMessage

{

char ucMessagelD;
char ucData[20 |;
} xMessage;

xQueueHandle xQueue;

/I Task to create a queue and post a value.
void vATask(void *pvParameters)

struct AMessage *pxMessage;

/I Create a queue capable of containing 10 pointer

/I These should be passed by pointer as they conta
XQueue = xQueueCreate(10, sizeof(struct AMessage
if(xQueue ==0)

/I Failed to create the queue.

}
...

/I Send a pointer to a struct AMessage object. Do

/I queue is already full.

pxMessage = & xMessage;

xQueueSend(xQueue, (void *) &pxMessage, (portT

/I ... Rest of task code.
}

/I Task to receive from the queue.
void vADifferentTask(void *pvParameters)

struct AMessage *pxRxedMessage;
if(xQueue '=0)

/I Receive a message on the created queue. Block
/I message is not immediately available.
if(xQueueReceive(xQueue, &(pxRxedMessage), (

/I pcRxedMessage now points to the struct AMessa
I/l by vVATask.

}

}

s to AMessage structures.
in a lot of data.

*));

n't block if the

ickType) 0);

for 10 ticks if a
portTickType) 10))

ge variable posted

25

/I ... Rest of task code.

xQueueGenericReceive

queue. h

portBASE_TYPE xQueueGenericReceive(
xQueueHandle xQueue,
void *pvBuffer,
portTickType xTicksToWait
portBASE_TYPE xJustPeek
)

It is preferred that the macro xQueueReceive()dsel wather than calling this function directly.

Receive an item from a queue. The item is recelbyedopy so a buffer of adequate size must be peali@he
number of bytes copied into the buffer was defimben the queue was created.

This function must not be used in an interrupt iservoutine. See xQueueReceiveFromISR for an @t

that can.
Parameters:

pxQueue The handle to the queue from which the item ise@eceived.

pvBuffer Pointer to the buffer into which the receivedritaill be copied.

XTicksToWait The maximum amount of time the task should bleeking for an item to
receive should the queue be empty at the timeeo€#t. The time is defined
in tick periods so the constant portTICK_RATE_M$uskl be used to convert
to real time if this is required. xQueueGenericRes@ will return
immediately if the queue is empty and xTicksToW&iD.

xJustPeek When set to true, the item received from the gusunot actually removed
from the queue - meaning a subsequent call to x€rieceive() will return the
same item. When set to false, the item being redeirom the queue is also
removed from the queue.

Returns:

pdTRUE if an item was successfully received from glaeue, otherwise pdFALSE.

Example usage:
struct AMessage

{

char ucMessagelD;
char ucData][20 |;

} xMessage;

xQueueHandle xQueue;

/I Task to create a queue and post a value.
void vATask(void *pvParameters)

struct AMessage *pxMessage;

/I Create a queue capable of containing 10 pointer

/I These should be passed by pointer as they conta
xQueue = xQueueCreate(10, sizeof(struct AMessage
if(xQueue ==0)

{

/l Failed to create the queue.

}
...

/I Send a pointer to a struct AMessage object. Do
/I queue is already full.

s to AMessage structures.
in a lot of data.

*));

n't block if the

26

pxMessage = & xMessage;
XxQueueSend(xQueue, (void *) &pxMessage, (portT ickType) 0);

/I ... Rest of task code.

}

/I Task to receive from the queue.
void vADifferentTask(void *pvParameters)

struct AMessage *pxRxedMessage;

if(xQueue '=0)

/I Receive a message on the created queue. Block for 10 ticks if a

/I message is not immediately available.

if(xQueueGenericReceive(xQueue, &(pxRxedMessag e), (portTickType) 10))
/I pcRxedMessage now points to the struct AMessa ge variable posted
/I by vVATask.

}

}

/I ... Rest of task code.

uxQueueMessagesWaiting

queue. h
unsigned portBASE_TYPE uxQueueMessagesWaiting(con st XxQueueHandle xQueue);

Return the number of messages stored in a queue.

Parameters:

| xQueue | A handle to the queue being queried.

Returns:
The number of messages available in the queue.

vQueueDelete

queue. h
void vQueueDelete(xQueueHandle xQueue);

Delete a queue - freeing all the memory allocatedtoring of items placed on the queue.

Parameters:

| xQueue | A handle to the queue to be deleted.

XxQueueSendToFrontFromISR

queue. h

portBASE_TYPE xQueueSendToFrontFromISR(
xQueueHandle pxQueue,
const void *pvlitemToQueue,
portBASE_TYPE *pxHigherPriorityTaskWoken
);

This is a macro that calls xQueueGenericSendFrofSR

Post an item to the front of a queue. It is safes® this macro from within an interrupt servicetie.

27

Items are queued by copy not reference so it iegakle to only queue small items, especially weafed from
an ISR. In most cases it would be preferable teesaqointer to the item being queued.

Parameters:
xQueue The handle to the queue on which the item istpdsted.
pvitemToQueue A pointer to the item that is to be placed ondheue. The size of the items

the queue will hold was defined when the queueax@ated, so this many
bytes will be copied from pvitemToQueue into thege storage area.
pxHigherPriorityT | xQueueSendToFrontFromISR() will set *pxHigherPtigFiaskWoken to
askWoken pdTRUE if sending to the queue caused a task ttoakband the unblocked
task has a priority higher than the currently ringniask. If
xQueueSendToFromFromISR() sets this value to pdTRIgE a context
switch should be requested before the interruexiied.

Returns:
pdTRUE if the data was successfully sent to theiguetherwise errQUEUE_FULL.

Example usage for buffered 10 (where the ISR cdainlmore than one value per call):
void vBufferISR(void)

char cln;
portBASE_TYPE xHigherPrioritTaskWoken;

/l We have not woken a task at the start of the IS R.
xHigherPriorityTaskWoken = pdFALSE;

/I Loop until the buffer is empty.
do

{
// Obtain a byte from the buffer.
cln = portINPUT_BYTE(RX_REGISTER_ADDRESS);

/I Post the byte.
xQueueSendToFrontFromISR(xRxQueue, &cln, &xHighe rPriorityTaskWoken);

} while(portNPUT_BYTE(BUFFER_COUNT));

/I Now the buffer is empty we can switch context i f necessary.
if(xHigherPriorityTaskWoken)

{
taskYIELD ();

}

XxQueueSendToBackFromISR

queue. h

portBASE_TYPE xQueueSendToBackFromISR(
xQueueHandle pxQueue,
const void *pvlitemToQueue,
portBASE_TYPE *pxHigherPriorityTaskWoken
);

This is a macro that calls xQueueGenericSendFrofSR
Post an item to the back of a queue. It is safeséothis macro from within an interrupt servicetiel

Items are queued by copy not reference so it iegakle to only queue small items, especially weafed from
an ISR. In most cases it would be preferable teesaqointer to the item being queued.

Parameters:
xQueue The handle to the queue on which the item istpdsted.
pvitemToQueue A pointer to the item that is to be placed ondheue. The size of the items

28

the queue will hold was defined when the queueamaated, so this many
bytes will be copied from pvitemToQueue into thege storage area.
pxHigherPriorityT | xQueueSendToBackFromISR() will set *pxHigherPrigriaskWoken to
askWoken pdTRUE if sending to the queue caused a task ttoakband the unblocked
task has a priority higher than the currently ringniask. If
xQueueSendToBackFromISR() sets this value to pdTRIgE a context
switch should be requested before the interruexiied.

Returns:
pdTRUE if the data was successfully sent to theiguetherwise errQUEUE_FULL.

Example usage for buffered IO (where the ISR cdainlmore than one value per call):
void vBufferISR(void)

char cln;
portBASE_TYPE xHigherPriorityTaskWoken;

/l We have not woken a task at the start of the IS R.
XxHigherPriorityTaskWoken = pdFALSE;

/I Loop until the buffer is empty.
do

{
// Obtain a byte from the buffer.
cln = portINPUT_BYTE(RX_REGISTER_ADDRESS);

/I Post the byte.
XxQueueSendToBackFromISR(xRxQueue, &cln, &Higher PriorityTaskWoken);

} while(portINPUT_BYTE(BUFFER_COUNT));

/I Now the buffer is empty we can switch context i f necessary.
if(xHigherPriorityTaskWoken)

{
taskYIELD ();

}

XxQueueSendFromISR

queue. h

portBASE_TYPE xQueueSendFromISR(
xQueueHandle pxQueue,

const void *pvlitemToQueue,

portBASE_TYPE *pxHigherPriorityTaskWoken

);

This is a macro that calls xQueueGenericSendFrofSR is included for backward compatibility with
versions of FreeRTOS.org that did not include theQueueSendToBackFromISR() and
xQueueSendToFrontFromISR() macros.

Post an item to the back of a queue. It is sateséothis function from within an interrupt serviceitine.

Items are queued by copy not reference so it iegakle to only queue small items, especially weafed from
an ISR. In most cases it would be preferable teesaqointer to the item being queued.

Parameters:
xQueue The handle to the queue on which the item istpdsted.
pvlitemToQueue A pointer to the item that is to be placed ondheue. The size of the items

the queue will hold was defined when the queueaxaated, so this many
bytes will be copied from pvitemToQueue into thege storage area.
pxHigherPriorityT | xQueueSendFromISR() will set *pxHigherPriorityTastMén to pdTRUE if
askWoken sending to the queue caused a task to unblockhangnblocked task has a

29

priority higher than the currently running taskx@ueueSendFromISR() sets
this value to pdTRUE then a context switch shodddmuested before the
interrupt is exited.

Returns:

pdTRUE if the data was successfully sent to theiguetherwise errQUEUE_FULL.
Example usage for buffered 10 (where the ISR cdainlmore than one value per call):
void vBufferISR(void)

char cln;
portBASE_TYPE xHigherPriorityTaskWoken;

/l We have not woken a task at the start of the IS R.
xHigherPriorityTaskWoken = pdFALSE;

/I Loop until the buffer is empty.
do

{
/I Obtain a byte from the buffer.
cln = portINPUT_BYTE(RX_REGISTER_ADDRESS);

/I Post the byte.
xQueueSendFromISR(xRxQueue, &cln, &xHigherPriori tyTaskWoken);

} while(portNPUT_BYTE(BUFFER_COUNT));

/I Now the buffer is empty we can switch context i f necessary.
if(xHigherPriorityTaskWoken)

/I Actual macro used here is port specific.
taskYIELD_FROM_ISR ();

}

}

xQueueGenericSendFromISR

queue. h

portBASE_TYPE xQueueGenericSendFromISR(
xQueueHandle pxQueue,
const void *pvitemToQueue,
portBASE_TYPE *pxHigherPriorityTaskWok en,
portBASE_TYPE xCopyPosition

)i

It is preferred that the macros xQueueSendFrom|SRQQueueSendToFrontFromISR() and
xQueueSendToBackFromISR() be used in place ohcgthiis function directly.

Post an item on a queue. It is safe to use thigifumfrom within an interrupt service routine.

Items are queued by copy not reference so it fefele to only queue small items, especially wbalted from
an ISR. In most cases it would be preferable teesaqointer to the item being queued.

Parameters:
xQueue The handle to the queue on which the item istpdsted.
pvlitemToQueue A pointer to the item that is to be placed ondheue. The size of the items

the queue will hold was defined when the queuea@ated, so this many
bytes will be copied from pvitemToQueue into thege storage area.
pxHigherPriorityT | xQueueGenericSendFromISR() will set *pxHigherPtidraskWoken to
askWoken pdTRUE if sending to the queue caused a task ttoakband the unblocked
task has a priority higher than the currently ringniask. If
xQueueGenericSendFromISR() sets this value to pddfidn a context
switch should be requested before the interruexiied.

xCopyPosition Can take the value queueSEND_TO_BACK to placétéme at the back of

30

the queue, or queueSEND_TO_FRONT to place thedtetfme front of the
queue (for high priority messages).

Returns:
pdTRUE if the data was successfully sent to theiguetherwise errQUEUE_FULL.

Example usage for buffered IO (where the ISR cdainlmore than one value per call):

void vBufferISR(void)
{

char cln;
portBASE_TYPE xHigherPriorityTaskWokenByPost;

/l We have not woken a task at the start of the IS R.
xHigherPriorityTaskWokenByPost = pdFALSE;

/I Loop until the buffer is empty.
do

{
// Obtain a byte from the buffer.
cln = portINPUT_BYTE(RX_REGISTER_ADDRESS);

/I Post each byte.
XxQueueGenericSendFromISR(XxRxQueue, &cln, &xHighe rPriorityTaskWokenByPost, queueSEND_TO_BACK);

} while(portINPUT_BYTE(BUFFER_COUNT));

/I Now the buffer is empty we can switch context i f necessary. Note that the
/I name of the yield function required is port spe cific.
if(xHigherPriorityTaskWokenByPost)

taskYIELD_YIELD_FROM_ISR();
}
}

XxQueueReceiveFromISR

queue. h

portBASE_TYPE xQueueReceiveFromISR(
xQueueHandle pxQueue,
void *pvBulffer,
portBASE_TYPE *pxTaskWoken
)

Receive an item from a queue. It is safe to useftimction from within an interrupt service routine

Parameters:
pxQueue The handle to the queue from which the item isd@eceived.
pvBuffer Pointer to the buffer into which the receivedriteill be copied.
pxTaskWoken A task may be blocked waiting for space to becan@lable on the queue. If
xQueueReceiveFromISR causes such a task to untpadlaskWoken will
get set to pdTRUE, otherwise *pxTaskWoken will rémanchanged.
Returns:

pdTRUE if an item was successfully received from quneue, otherwise pdFALSE.
Example usage:
xQueueHandle xQueue;

/I Function to create a queue and post some values
void vAFunction(void *pvParameters)

char cValueToPost;
const portTickType xBlockTime = (portTickType)0x ff;

/I Create a queue capable of containing 10 charact ers.
xQueue = xQueueCreate(10, sizeof(char));

31

if(xQueue ==0)

/I Failed to create the queue.

}
...

/I Post some characters that will be used within a

/I is full then this task will block for xBlockTim
cValueToPost = 'a’;

XQueueSend(xQueue, (void *) &cValueToPost, xBlo
cValueToPost ='b';

xQueueSend(xQueue, (void *) &cValueToPost, xBlo

/I ... keep posting characters ... this task may b
/I becomes full.

cValueToPost = 'c';
XxQueueSend(xQueue, (void *) &cValueToPost, xBlo

/I'|SR that outputs all the characters received on
void vVISR_Routine(void)

{
portBASE_TYPE xTaskWokenByReceive = pdFALSE;
char cRxedChar;

while(xQueueReceiveFromISR(xQueue, (void *) &c

/I A character was received. Output the characte
vOutputCharacter(cRxedChar);

/I'If removing the character from the queue woke

/I posting onto the queue cTaskWokenByReceive wil
/l pPdTRUE. No matter how many times this loop it

/I task will be woken.

}

if(cTaskWokenByPost != (char) pdFALSE;
{
taskYIELD ();

}
}

Semaphore / Mutexes

vSemaphoreCreateBinary
semphr. h

n ISR. If the queue
e ticks.

ckTime);
ckTime);

lock when the queue

ckTime);

the queue.

RxedChar, &TaskWokenByReceive))
r now.
the task that was

| have been set to
erates only one

vSemaphoreCreateBinary(xSemaphoreHandle xSemaphore)

Macro that implements a semaphore by using the existiregile mechanism. The queue length is 1 as this is
binary semaphore. The data size is 0 as we dont twwaactually store any data - we just want tovkribthe
queue is empty or full.

This type of semaphore can be used for pure synidaiion between tasks or between an interruptaatask.
The semaphore need not be given back once obtasmedne task/interrupt can continuously 'give' the
semaphore while another continuously 'takes' theaplore. For this reason this type of semaphors dokuse

a priority inheritance mechanism. For an altermatithat does use priority inheritance see
xSemaphoreCreateMutex().

Parameters:
| xSemaphore

| Handle to the created semaphore. Should be efxgemaphoreHandle.

32

Example usage:
xSemaphoreHandle xSemaphore;

void vATask(void * pvParameters)

{

/I Semaphore cannot be used before a call to vS emaphoreCreateBinary ().
/I This is a macro so pass the variable in dire ctly.
vSemaphoreCreateBinary(xSemaphore);

if(xSemaphore != NULL)

/I The semaphore was created successfully.
/I The semaphore can now be used.

}
}

xSemaphoreTake

semphr. h

xSemaphoreTake(
xSemaphoreHandle xSemaphore,
portTickType xBlockTime

Macro to obtain a semaphore. The semaphore must haseiopsly been created with a call to
vSemaphoreCreateBinary(), xSemaphoreCreateMutex@emaphoreCreateCounting().

Parameters:
xSemaphore A handle to the semaphore being taken - obtaiviezh the semaphore was
created.
xBlockTime The time in ticks to wait for the semaphore todyee available. The macro
portTICK_RATE_MS can be used to convert this teal time. A block time
of zero can be used to poll the semaphore. A biook of portMAX_DELAY
can be used to block indefinitely (provided INCLUDH askSuspend is set to
1 in FreeRTOSConfig.h).
Returns:

pdTRUE if the semaphore was obtained. pdFALSE IbgBTime expired without the semaphore becomindlavke.

Example usage:
xSemaphoreHandle xSemaphore = NULL;

/I A task that creates a semaphore.
void vATask(void * pvParameters)

/I Create the semaphore to guard a shared resou rce.
vSemaphoreCreateBinary(xSemaphore);

}

/I A task that uses the semaphore.
void vAnotherTask(void * pvParameters)

/I ... Do other things.

if(xSemaphore != NULL)

/I See if we can obtain the semaphore. If the semaphore is not available
/I wait 10 ticks to see if it becomes free.
if(xSemaphoreTake(xSemaphore, (portTickT ype) 10) == pdTRUE)

/I We were able to obtain the semaphore and can now access the

/l shared resource.

...

33

/l We have finished accessing the share d resource. Release the
/I semaphore.
xSemaphoreGive(xSemaphore);

}

else

/I We could not obtain the semaphore an d can therefore not access
/ the shared resource safely.

}
}
}

xSemaphoreTakeRecursive
semphr. h xSemaphoreTakeRecursive(xSemaphoreHavdiex, portTickType xBlockTime)

Macro to recursively obtain, or 'take', a mutex typmaphore. The mutex must have previously been cteate
using a call to xSemaphoreCreateRecursiveMutex();

configUSE_RECURSIVE_MUTEXES must be set to 1 indR€OSConfig.h for this macro to be available.
This macro must not be used on mutexes created uSiemaphoreCreateMutex().

A mutex used recursively can be 'taken' repeateglthe owner. The mutex doesn't become availaldaamtil
the owner has called xSemaphoreGiveRecursive(e&mh successful ‘take' request. For example, #sk t
successfully takes' the same mutex 5 times themtitex will not be available to any other taskilunbas also
'given’ the mutex back exactly five times.

Parameters:
xMutex A handle to the mutex being obtained. This isttaedle returned by
xSemaphoreCreateRecursiveMutex();
xBlockTime The time in ticks to wait for the semaphore todree available. The macro
portTICK_RATE_MS can be used to convert this teal time. A block time
of zero can be used to poll the semaphore. Ifdbke already owns the
semaphore then xSemaphoreTakeRecursive() willmétamediately no
matter what the value of xBlockTime.
Returns:

pdTRUE if the semaphore was obtained. pdFALSE IbgBTime expired without the semaphore becomindlavke.
Example usage:
xSemaphoreHandle xMutex = NULL;

/I A task that creates a mutex.
void vATask(void * pvParameters)

/I Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex();

}

/I A task that uses the mutex.
void vAnotherTask(void * pvParameters)

/I ... Do other things.

if(xMutex != NULL)

/I See if we can obtain the mutex. If the mutex is not available

/l wait 10 ticks to see if it becomes free.

if(xSemaphoreTakeRecursive(xSemaphore, (portTickType) 10) == pdTRUE)
Il We were able to obtain the mutex and can now access the

/l shared resource.
...

/I For some reason due to the nature of the code further calls to
/I xSemaphoreTakeRecursive() are made on the sam e mutex. In real

34

/I code these would not be just sequential calls as this would make

/I no sense. Instead the calls are likely to be buried inside
/I a more complex call structure.
xSemaphoreTakeRecursive(xMutex, (port TickType) 10);
xSemaphoreTakeRecursive(xMutex, (port TickType) 10);
/I The mutex has now been ‘taken' three times, so will not be
/I available to another task until it has also b een given back
/l three times. Again it is unlikely that real code would have
/I these calls sequentially, but instead buried in a more complex
/I call structure. This is just for illustrativ e purposes.

xSemaphoreGiveRecursive(xMutex);
xSemaphoreGiveRecursive(xMutex);
xSemaphoreGiveRecursive(xMutex);

/I Now the mutex can be taken by other tasks.

}

else

/l We could not obtain the mutex and ca n therefore not access
/ the shared resource safely.
}
}
}

xSemaphoreGive

semphr. h
xSemaphoreGive(xSemaphoreHandle xSemaphore)

Macro to release a semaphore. The semaphore must hawéoysly been created with a call to
vSemaphoreCreateBinary(), xSemaphoreCreateMutax@SemaphoreCreateCounting(). and obtained using
sSemaphoreTake().

This macro must not be used from an ISR. See xSemne@iveFromISR () for an alternative which carubed
from an ISR.

This macro must also not be used on semaphore®gdnesing xSemaphoreCreateRecursiveMutex().

Parameters:
xSemaphore A handle to the semaphore being released. Thieikandle returned when
the semaphore was created.
Returns:

pdTRUE if the semaphore was released. pdFALSE érear occurred. Semaphores are implemented usieges. An
error can occur if there is no space on the quepest a message - indicating that the semapheutirst obtained
correctly.
Example usage:
xSemaphoreHandle xSemaphore = NULL;

void vATask(void * pvParameters)

{

/I Create the semaphore to guard a shared resou rce.
vSemaphoreCreateBinary(xSemaphore);

if(xSemaphore !'= NULL)

if(xSemaphoreGive(xSemaphore) != pdTRUE)
/l We would expect this call to fail be cause we cannot give
/I a semaphore without first “taking" i t!

}

/I Obtain the semaphore - don't block if th e semaphore is not

/I immediately available.

35

if(xSemaphoreTake(xSemaphore, (portTickT ype)0))

{
/I We now have the semaphore and can ac cess the shared resource.
...
/l We have finished accessing the share d resource so can free the
/I semaphore.
if(xSemaphoreGive(xSemaphore) |= pdT RUE)
/I We would not expect this call to fail because we must have
/Il obtained the semaphore to get he re.
}
}
}
}

xSemaphoreGiveRecursive

semphr. h
xSemaphoreGiveRecursive(xSemaphoreHandle xMutex)

Macro to recursively release, or 'give', a mutex typmaphore. The mutex must have previously beenetteat
using a call to xSemaphoreCreateRecursiveMutex();

configUSE_RECURSIVE_MUTEXES must be set to 1 indR€OSConfig.h for this macro to be available.
This macro must not be used on mutexes created ¥SiemaphoreCreateMutex().

A mutex used recursively can be 'taken' repeateglthe owner. The mutex doesn't become availaldaamtil
the owner has called xSemaphoreGiveRecursive(eémh successful ‘take' request. For example, #sk t
successfully takes' the same mutex 5 times themthtex will not be available to any other taskilunbas also
‘given’ the mutex back exactly five times.

Parameters:
xMutex A handle to the mutex being released, or 'givEm's is the handle returned by
xSemaphoreCreateMutex();
Returns:

pdTRUE if the semaphore was given.
Example usage:
xSemaphoreHandle xMutex = NULL;

/I A task that creates a mutex.
void vATask(void * pvParameters)

/I Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex();

}

/I A task that uses the mutex.
void vAnotherTask(void * pvParameters)

/I ... Do other things.

if(xMutex != NULL)

{
/I See if we can obtain the mutex. If the mutex is not available
/I wait 10 ticks to see if it becomes free.
if(xSemaphoreTakeRecursive(xMutex, (port TickType) 10) == pdTRUE)
{

Il We were able to obtain the mutex and can now access the
/l shared resource.

...

36

/I For some reason due to the nature of

/I xSemaphoreTakeRecursive() are made on the sam

/I code these would not be just sequential calls

/I no sense. Instead the calls are likely to be

/I a more complex call structure.
xSemaphoreTakeRecursive(xMutex, (port
xSemaphoreTakeRecursive(xMutex, (port

/I The mutex has now been ‘taken' three
/I available to another task until it has also b
/I three times. Again it is unlikely that real
/I these calls sequentially, it would be more li
/I to xSemaphoreGiveRecursive() would be called
/l unwound. This is just for demonstrative purp

the code further calls to
e mutex. In real

as this would make
buried inside

TickType) 10);
TickType) 10);

times, so will not be
een given back
code would have
kely that the calls
as a call stack

0Ses.

xSemaphoreGiveRecursive(xMutex);
xSemaphoreGiveRecursive(xMutex);
xSemaphoreGiveRecursive(xMutex);

/I Now the mutex can be taken by other tasks.

}

else
/l We could not obtain the mutex and ca n therefore not access
/l the shared resource safely.
}
}
}

xSemaphoreGiveFromISR

semphr. h

xSemaphoreGiveFromISR(
xSemaphoreHandle xSemaphore,
signed portBASE_TYPE *pxH igherPriorityTaskWoken

Macro to release a semaphore. The semaphore must hawéoysly been created with a call to
vSemaphoreCreateBinary() or xSemaphoreCreateCagyntin

Mutex type semaphores (those created using a@alemaphoreCreateMutex()) must not be used with th
macro.

This macro can be used from an ISR.

Parameters:

xSemaphore A handle to the semaphore being released. Thieikandle returned when
the semaphore was created.

pxHigherPriorityT | xSemaphoreGiveFromISR() will set *pxHigherPriorigdkWoken to
askWoken pdTRUE if giving the semaphore caused a task téogkband the unblocked
task has a priority higher than the currently rumgriask. If
xSemaphoreGiveFromISR() sets this value to pd TRWE & context switch
should be requested before the interrupt is exited.

Returns:
pdTRUE if the semaphore was successfully givergmilse errQUEUE_FULL.
Example usage:

\#define LONG_TIME Oxffff
\#define TICKS_TO_WAIT 10
xSemaphoreHandle xSemaphore = NULL;

/I Repetitive task.
void vATask(void * pvParameters)

{
for(;;)
{

37

/I We want this task to run every 10 ticks of a timer. The semaphore
/I was created before this task was started

/I Block waiting for the semaphore to becom e available.
if(xSemaphoreTake(xSemaphore, LONG_TIME) == pdTRUE)

/I 1t is time to execute.

...

/l We have finished our task. Return t o the top of the loop where
// we will block on the semaphore until it is time to execute
/l again. Note when using the semaphor e for synchronisation with an
/I'|SR in this manner there is no need to 'give' the semaphore back.
}
}
}
/I Timer ISR

void vTimerISR(void * pvParameters)

static unsigned char ucLocalTickCount = 0;
static signed portBASE_TYPE xHigherPriorityTaskWok en;

/I A timer tick has occurred.

/I ... Do other time functions.

/l'ls it time for vATask () to run?
xHigherPriorityTaskWoken = pdFALSE;

ucLocalTickCount++;
if(ucLocalTickCount >= TICKS_TO_WAIT)

/I ' Unblock the task by releasing the semaph ore.
xSemaphoreGiveFromISR(xSemaphore, &xHigher PriorityTaskWoken);
/I Reset the count so we release the semaph ore again in 10 ticks time.
ucLocalTickCount = 0;

}

if(xHigherPriorityTaskWoken != pdFALSE)
/I We can force a context switch here. Con text switching from an
/I ISR uses port specific syntax. Check th e demo task for your port
// to find the syntax required.

}

}

vSemaphoreCreateMutex

semphr. h
xSemaphoreHandle xSemaphoreCreateMutex(void)

Macro that implements a mutex semaphore by using thstirgx queue mechanism.

Mutexes created using this macro can be accessaglthe xSemaphoreTake() and xSemaphoreGive() macro
The xSemaphoreTakeRecursive() and xSemaphoreGiuvestes() macros should not be used.

This type of semaphore uses a priority inheritameghanism so a task 'taking' a semaphore MUST ALWAY
'give’ the semaphore back once the semaphoradtlsnger required.

Mutex type semaphores cannot be used from withéarrimpt service routines.

See vSemaphoreCreateBinary() for an alternativdementation that can be used for pure synchrooisati
(where one task or interrupt always 'gives' theagdrmore and another always ‘takes' the semaphodefr@n
within interrupt service routines.

38

Returns:

xSemaphore Handle to the created mutex semaphuoaldsbe of type xSemaphoreHandle.
Example usage:
xSemaphoreHandle xSemaphore;

void vATask(void * pvParameters)

{
/I Semaphore cannot be used before a call to xS emaphoreCreateMutex().
/I This is a macro so pass the variable in dire ctly.
xSemaphore = xSemaphoreCreateMutex();

if(xSemaphore !'= NULL)

/I The semaphore was created successfully.
/I The semaphore can now be used.
}
}

semphr. h
xSemaphoreHandle xSemaphoreCreateRecursiveMutex(void)

Macro that implements a recursive mutex by using thstiey queue mechanism.

Mutexes created using this macro can be accessadg uthe xSemaphoreTakeRecursive() and
xSemaphoreGiveRecursive() macros. The xSemaphoe€Takd xSemaphoreGive() macros should not be
used.

A mutex used recursively can be 'taken' repeateglthe owner. The mutex doesn't become availaldamamtil
the owner has called xSemaphoreGiveRecursive(eémh successful ‘take' request. For example, #sk t
successfully takes' the same mutex 5 times themthtex will not be available to any other taskilunbas also
‘given’ the mutex back exactly five times.

This type of semaphore uses a priority inheritameghanism so a task 'taking' a semaphore MUST ALWAY
'give’ the semaphore back once the semaphoradtlsnger required.

Mutex type semaphores cannot be used from withéarrmpt service routines.

See vSemaphoreCreateBinary() for an alternativdeimentation that can be used for pure synchrooisati
(where one task or interrupt always 'gives' theagdmore and another always ‘'takes' the semaphaiefr@n
within interrupt service routines.

Returns:

xSemaphore Handle to the created mutex semaphuoaldsbe of type xSemaphoreHandle.
Example usage:
xSemaphoreHandle xSemaphore;

void vATask(void * pvParameters)

{

/I Semaphore cannot be used before a call to xS emaphoreCreateMutex().
/I This is a macro so pass the variable in dire ctly.
xSemaphore = xSemaphoreCreateRecursiveMutex();

if(xSemaphore != NULL)

/I The semaphore was created successfully.
/I The semaphore can now be used.
}
}

xSemaphoreCreateCounting
semphr. h

39

xSemaphoreHandle xSemaphoreCreateCounting(unsigned portBASE_TYPE u XMaxCount, unsigned portBASE_TYPE
uxInitialCount)

Macro that creates a counting semaphore by using tisérexqueue mechanism.
Counting semaphores are typically used for twogkin
1) Counting events.

In this usage scenario an event handler will 'givesfemaphore each time an event occurs (incrergetite
semaphore count value), and a handler task vkk"t@ semaphore each time it processes an evemefdenting
the semaphore count value). The count value igttier the difference between the number of evématshave
occurred and the number that have been processéekisicase it is desirable for the initial couafue to be
zero.

2) Resource management.

In this usage scenario the count value indicatesnilmber of resources available. To obtain cordfoa
resource a task must first obtain a semaphoreregwmting the semaphore count value. When the calné
reaches zero there are no free resources. Whesk diriisshes with the resource it 'gives' the seraplback -
incrementing the semaphore count value. In thie dais desirable for the initial count value to égual to the
maximum count value, indicating that all resouraesfree.

Parameters:
uxMaxCount The maximum count value that can be reached. \iieeeemaphore reaches
this value it can no longer be 'given'.
ux! nitial Count The count value assigned to the semaphore wheieriéated.
Returns:

Handle to the created semaphore. Null if the semm@pbould not be created.

Example usage:
xSemaphoreHandle xSemaphore;

void vATask(void * pvParameters)

{

xSemaphoreHandle xSemaphore = NULL;

/I Semaphore cannot be used before a call to xS emaphoreCreateCounting().
/I The max value to which the semaphore can cou nt should be 10, and the
/[initial value assigned to the count should b e 0.

xSemaphore = xSemaphoreCreateCounting(10, 0);
if(xSemaphore !'= NULL)

/I The semaphore was created successfully.
/I The semaphore can now be used.
}
}

Software Timers

xTimerCreate

xTimerHandle xTimerCreate(const signed char *pcT imerName,
portTickType xTimerPeriod,
unsigned portBASE_TYPE uxAutoReload,
void * pvTimerID,
tmrTIMER_CALLBACK pxCallbackFunction);

40

Creates a new software timer instance. This aksctie storage required by the new timer, inigslithe new
timers internal state, and returns a handle by lwtlie new timer can be referenced.

Timers are created in the dormant state. The xTSmtaet(), XxTimerReset(), xTimerStartFromISR(),
xTimerResetFromISR(), xTimerChangePeriod() and »FibhangePeriodFromISR() API functions can all be
used to transition a timer into the active state.

Parameters:
pcTimerName

A text name that is assigned to the timer. Thiddne purely to assist
debugging. The kernel itself only ever referencémar by its handle, and
never by its name.

The timer period. The time is defined in tickipds so the constant
portTICK_RATE_MS can be used to convert a time tiet been specified in
milliseconds. For example, if the timer must exgifer 100 ticks, then
xTimerPeriod should be set to 100. Alternativelyhe timer must expire after
500ms, then xPeriod can be set to (500 / portTIRKTE_MS) provided
configTICK_RATE_HZ is less than or equal to 1000.

If uxAutoReload is set to pdTRUE then the timét @xpire repeatedly with a
frequency set by the xTimerPeriod parameter. IfuboReload is set to
pdFALSE then the timer will be a one-shot timer antkr the dormant state
after it expires.

An identifier that is assigned to the timer betmgated. Typically this would
be used in the timer callback function to identiflyich timer expired when th
same callback function is assigned to more thartiomer.

pxCallbackFunctio | The function to call when the timer expires. Catk&unctions must have the
n prototype defined by tmrTIMER_CALLBACK, which is td
vCallbackFunction(xXTIMER *xTimer);".

xTimerPeriod

uxAutoRel oad

pvTimerID

(1%

Returns:

If the timer is successfully create then a handlihé newly created timer is returned. If the tiro@nnot be created
(because either there is insufficient FreeRTOS heayaining to allocate the timer structures, ortiimer period was
set to 0) then O is returned.

Example usage:

#define NUM_TIMERS 5

/I An array to hold handles to the created timers.
xTimerHandle xTimers[NUM_TIMERS];

/I An array to hold a count of the number of times
long |ExpireCounters| NUM_TIMERS] ={0 };

each timer expires.

/I Define a callback function that will be used by
/I The callback function does nothing but count th
/I associated timer expires, and stop the timer on
// 10 times.

void vTimerCallback(xTIMER *pxTimer)

long IArraylndex;
const long xMaxExpiryCountBeforeStopping = 10;

/I Optionally do something if the pxTimer para
configASSERT(pxTimer);

/I Which timer expired?
|Arraylndex = (long) pvTimerGetTimerlD(pxTi

/I Increment the number of times that pxTimer
IExpireCounters[IArrayindex] += 1;

/I 1f the timer has expired 10 times then stop
if(IExpireCounters[IArraylndex] == xMaxExpi

/I Do not use a block time if calling a ti
/I timer callback function, as doing so co

multiple timer instances.
e number of times the
ce the timer has expired

meter is NULL.

mer);

has expired.

it from running.
ryCountBeforeStopping)

mer API function from a
uld cause a deadlock!

41

xTimerStop(pxTimer, 0);
}
}

void main(void)

long x;
/I Create then start some timers. Starting th
/I has been started means the timers will star
/ the scheduler starts.
for(x = 0; x < NUM_TIMERS; x++)

xTimers[x] = xTimerCreate("Timer",

(100 * x

pdTRUE,
they expire.

(void *)
array index.

vTimerCall
expires.

);
if(xTimers[x] == NULL)

/I The timer was not created.
}
else
{
/I Start the timer. No block time is
/I it would be ignored because the sch
/I started.
if(xTimerStart(xTimers[x], 0) !=

/I The timer could not be set into
}
}
}

...
/I Create tasks here.
...

/I Starting the scheduler will start the timer
/I been set into the active state.
XxTaskStartScheduler();

/I Should not reach here.
for(;;);

pvTimerGetTimerID

void *pvTimerGetTimerlD(xTimerHandle xTimer);

Returns the ID assigned to the timer.

e timers before the scheduler
t running immediately that

/I Just a text name, not used by the kernel
), /I The timer period in ticks.
/I The timers will auto-reload themselves whe
X, /I Assign each timer a unique id equal to i

back //Eachtimer calls the same callback when

specified, and even if one was
eduler has not yet been

pdPASS)

the Active state.

s running as they have already

ts

IDs are assigned to timers using the pvTimerID patar of the call to xTimerCreated() that was usecreate

the timer.

If the same callback function is assigned to midtiimers then the timer ID can be used within ¢a#back

function to identify which timer actually expired.

Parameters:

| XTimer | The timer being queried.

42

Returns:
The ID assigned to the timer being queried.
Example usage:

See the xTimerCreate() API function example usageario.

xTimerlsTimerActive

portBASE_TYPE xTimerlsTimerActive(xTimerHandle xT imer);

Queries a timer to see if it is active or dormant.

A timer will be dormant if: 1) It has been creatad not started, or 2) It is an expired on-shogtirthat has not
been restarted.

Timers are created in the dormant state. The xTSmtaet(), XxTimerReset(), xTimerStartFromISR(),
xTimerResetFromISR(), xTimerChangePeriod() and >éFibhangePeriodFromISR() API functions can all be
used to transition a timer into the active state.

Parameters:
| XTimer | The timer being queried. |

Returns:
pdFALSE will be returned if the timer is dormantvAlue other than pdFALSE will be returned if thadr is active.
Example usage:
/I This function assumes xTimer has already been ¢ reated.
void vAFunction(xTimerHandle xTimer)

if(XTimerlsTimerActive(xTimer) != pdFALSE) /I or more simply and equivalently "if(
XTimerlsTimerActive(xTimer))"

/I xTimer is active, do something.

}

else

/I xTimer is not active, do something else

}
}

xTimerStart
portBASE_TYPE xTimerStart(xTimerHandle xTimer, po rtTickType xBlockTime);

Timer functionality is provided by a timer servidaémon task. Many of the public FreeRTOS timer API
functions send commands to the timer service fasigh a queue called the timer command queue. ifites t
command queue is private to the kernel itself anabit directly accessible to application code. [Emgth of the
timer command queue is set by the configTIMER_QUELENGTH configuration constant.

xTimerStart() starts a timer that was previouskated using the xTimerCreate() API function. If timer had
already been started and was already in the astate, then xTimerStart() has equivalent functibyab the
xTimerReset() API function.

Starting a timer ensures the timer is in the actbege. If the timer is not stopped, deleted, setrén the mean
time, the callback function associated with theetiwill get called 'n' ticks after xTimerStart() svaalled, where
'n' is the timers defined period.

43

It is valid to call xTimerStart() before the schéiuhas been started, but when this is done thertimill not
actually start until the scheduler is started, Hradtimers expiry time will be relative to when tbeheduler is
started, not relative to when xTimerStart() wasechl

The configUSE_TIMERS configuration constant mussbgto 1 for xTimerStart() to be available.

Parameters:
XTimer The handle of the timer being started/restarted.
xBlockTime Specifies the time, in ticks, that the callingkahould be held in the Blocked
state to wait for the start command to be succlgsient to the timer
command queue, should the queue already be fulhwhenerStart() was
called. xBlockTime is ignored if xTimerStart() ialeed before the scheduler is
started.
Returns:

pdFAIL will be returned if the start command coulot be sent to the timer command queue even aeckTime
ticks had passed. pdPASS will be returned if theroand was successfully sent to the timer commaerdeu/Nhen
the command is actually processed will depend erptlority of the timer service/daemon task rekatio other tasks in
the system, although the timers expiry time istiedato when xTimerStart() is actually called. Tiaer
service/daemon task priority is set by the confidER_TASK_PRIORITY configuration constant.

Example usage:
See the xTimerCreate() API function example usageario.

xTimerStop

portBASE_TYPE xTimerStop(xTimerHandle xTimer, por tTickType xBlockTime);

Timer functionality is provided by a timer servidaémon task. Many of the public FreeRTOS timer API
functions send commands to the timer service taskgh a queue called the timer command queue. ifites t
command queue is private to the kernel itself amabi directly accessible to application code. [Emgth of the
timer command queue is set by the configTIMER_QUELENGTH configuration constant.

xTimerStop() stops a timer that was previouslytsethusing either of the The xTimerStart(), XTimes&§),
xTimerStartFromISR(), xTimerResetFromISR(), xTimkaBgePeriod() or xTimerChangePeriodFromISR() API
functions.

Stopping a timer ensures the timer is not in thvactate.
The configUSE_TIMERS configuration constant mussbeto 1 for xTimerStop() to be available.

Parameters:
XTimer The handle of the timer being stopped.
xBlockTime Specifies the time, in ticks, that the callingkahould be held in the Blocked
state to wait for the stop command to be succdgsfeht to the timer
command queue, should the queue already be fulhwhanerStop() was
called. xBlockTime is ignored if xTimerStop() islleal before the scheduler is
started.
Returns:

pdFAIL will be returned if the stop command coulat be sent to the timer command queue even afteckBime
ticks had passed. pdPASS will be returned if theroand was successfully sent to the timer commaedeu/NVhen
the command is actually processed will depend erptlority of the timer service/daemon task rekatio other tasks in
the system. The timer service/daemon task prigiset by the configTIMER_TASK_PRIORITY configuratti
constant.

Example usage:
See the xTimerCreate() API function example usageario.

44

xTimerChangePeriod

portBASE_TYPE xTimerChangePeriod(xTimerHandle xT imer,
portTickType xNewPeriod,
portTickType xBlockTime);

Timer functionality is provided by a timer servidaémon task. Many of the public FreeRTOS timer API
functions send commands to the timer service taskgh a queue called the timer command queue. ififez t
command queue is private to the kernel itself amubi directly accessible to application code. [Emgth of the
timer command queue is set by the configTIMER_QUELENGTH configuration constant.

xTimerChangePeriod() changes the period of a tiima&r was previously created using the xTimerCrgat&(
function.

xTimerChangePeriod() can be called to change tHegef an active or dormant state timer.
The configUSE_TIMERS configuration constant mussbgeto 1 for xTimerChangePeriod() to be available.

Parameters:
XTimer The handle of the timer that is having its perbdnged.
xNewPeriod The new period for xTimer. Timer periods are $fpet in tick periods, so the

constant portTICK_RATE_MS can be used to convéirha that has been
specified in milliseconds. For example, if the tmaust expire after 100 ticks,
then xNewPeriod should be set to 100. Alternativiélghe timer must expire
after 500ms, then xNewPeriod can be set to (H0tTICK_RATE_MS)
provided configTICK_RATE_HZ is less than or equalL000.

xBlockTime Specifies the time, in ticks, that the callingkahould be held in the Blocked
state to wait for the change period command toulseessfully sent to the
timer command queue, should the queue alreadylbetian
xTimerChangePeriod() was called. xBlockTime is igaubif
xTimerChangePeriod() is called before the schedslstarted.

Returns:
pdFAIL will be returned if the change period commamould not be sent to the timer command queue aften
xBlockTime ticks had passed. pdPASS will be retdrifighe command was successfully sent to the ticoemmand
queue. When the command is actually processedlgfiend on the priority of the timer service/daernask relative to
other tasks in the system. The timer service/daetasnpriority is set by the configTIMER_TASK_PRIOR
configuration constant.

Example usage:

/I This function assumes xTimer has already been c reated. If the timer

/I referenced by xTimer is already active when it is called, then the timer
/l'is deleted. If the timer referenced by xTimer is not active when it is
/I called, then the period of the timer is set to 500ms and the timer is
// started.

void vAFunction(xTimerHandle xTimer)

if(xTimerlsTimerActive(xTimer) != pdFALSE) /I or more simply and equivalently "if(
xTimerlsTimerActive(xTimer))"

/I xTimer is already active - delete it.
XxTimerDelete(XTimer);

}

else
{
/I XTimer is not active, change its period to 500ms. This will also
/I cause the timer to start. Block for a maximum of 100 ticks if the
/I change period command cannot immediatel y be sent to the timer
/l command queue.
if(xTimerChangePeriod(xTimer, 500 / port TICK_RATE_MS, 100) == pdPASS)

/I The command was successfully sent.

45

}

else

/I The command could not be sent, even after waiting for 100 ticks
/I to pass. Take appropriate action h ere.
}
}
}

xTimerDelete

portBASE_TYPE xTimerDelete(xTimerHandle xTimer, p ortTickType xBlockTime);

Timer functionality is provided by a timer servidaémon task. Many of the public FreeRTOS timer API
functions send commands to the timer service fasigh a queue called the timer command queue. ifites t
command queue is private to the kernel itself anabi directly accessible to application code. [Emgth of the
timer command queue is set by the configTIMER_QUELENGTH configuration constant.

xTimerDelete() deletes a timer that was previogsdated using the xTimerCreate() API function.
The configUSE_TIMERS configuration constant mussbgeto 1 for xTimerDelete() to be available.

Parameters:
XTimer The handle of the timer being deleted.
xBlockTime Specifies the time, in ticks, that the callingkahould be held in the Blocked
state to wait for the delete command to be sucakgsient to the timer
command queue, should the queue already be fulhwiiemerDelete() was
called. xBlockTime is ignored if xTimerDelete()dalled before the scheduler
is started.
Returns:

pdFAIL will be returned if the delete command coofat be sent to the timer command queue evenxdleckTime
ticks had passed. pdPASS will be returned if theroand was successfully sent to the timer commaedeu/NVhen
the command is actually processed will depend erptlority of the timer service/daemon task rekatio other tasks in
the system. The timer service/daemon task prigiget by the configTIMER_TASK_PRIORITY configuratti
constant.

Example usage:
See the xTimerChangePeriod() API function examplge scenario.

xTimerReset

portBASE_TYPE xTimerReset(xTimerHandle xTimer, po rtTickType xBlockTime);

Timer functionality is provided by a timer servidaémon task. Many of the public FreeRTOS timer API
functions send commands to the timer service fasigh a queue called the timer command queue. ifites t
command queue is private to the kernel itself anabi directly accessible to application code. [Emgth of the
timer command queue is set by the configTIMER_QUELENGTH configuration constant.

xTimerReset() re-starts a timer that was previogsbated using the xTimerCreate() API functionthé timer
had already been started and was already in theeastate, then xTimerReset() will cause the tirteer
re-evaluate its expiry time so that it is relati@avhen xTimerReset() was called. If the timer wathe dormant
state then xTimerReset() has equivalent functiontdithe xTimerStart() API function.

46

Resetting a timer ensures the timer is in the acttate. If the timer is not stopped, deletedesetin the mean
time, the callback function associated with theetinwill get called 'n' ticks after xTimerReset() svealled,

where 'n" is the timers defined period.

It is valid to call xTimerReset() before the schedunas been started, but when this is done thertimill not
actually start until the scheduler is started, tredtimers expiry time will be relative to when tbeheduler is
started, not relative to when xTimerReset() wakedal

The configUSE_TIMERS configuration constant mussbgeto 1 for xTimerReset() to be available.

Parameters:
XTimer The handle of the timer being reset/started/riesta
xBlockTime Specifies the time, in ticks, that the callingkahould be held in the Blocked
state to wait for the reset command to be succissknt to the timer
command queue, should the queue already be fulhwhanerReset() was
called. xBlockTime is ignored if xTimerReset() &@lled before the scheduler
is started.
Returns:

pdFAIL will be returned if the reset command contit be sent to the timer command queue even adleckTime
ticks had passed. pdPASS will be returned if theroand was successfully sent to the timer commaedeu/NVhen
the command is actually processed will depend erptlority of the timer service/daemon task rekatio other tasks in
the system, although the timers expiry time istietato when xTimerStart() is actually called. Timaer
service/daemon task priority is set by the confidER_TASK_PRIORITY configuration constant.

Example usage:

/I When a key is pressed, an LCD back-light is swi
/l without a key being pressed, then the LCD back-
/I this case, the timer is a one-shot timer.

xTimerHandle xBacklightTimer = NULL;

/I The callback function assigned to the one-shot
/I parameter is not used.
void vBacklightTimerCallback(XTIMER *pxTimer)

/I The timer expired, therefore 5 seconds must
/I was pressed. Switch off the LCD back-light
vSetBacklightState(BACKLIGHT_OFF);

}

/I The key press event handler.

void vKeyPressEventHandler(char cKey)

{
/I Ensure the LCD back-light is on, then reset
/Il responsible for turning the back-light off
Il key inactivity. Wait 10 ticks for the comm
/l'if it cannot be sent immediately.
vSetBacklightState(BACKLIGHT_ON);
if(xTimerReset(xBacklightTimer, 100) != pdP

/I The reset command was not executed succ
/I action here.

}

/I Perform the rest of the key processing here

}

void main(void)

long x;
/I Create then start the one-shot timer that i
/I the back-light off if no keys are pressed w

xBacklightTimer=xTimerCreate("BacklightTime
(5000 / portT

tched on. If 5 seconds pass
light is switched off. In

timer. In this case the

have passed since a key

the timer that is
after 5 seconds of
and to be successfully sent

ASS)

essfully. Take appropriate

s responsible for turning
ithin a 5 second period.

r, /lJustatextname,notusedbythe kernel.
ICK_RATE_MS), /I The timer period in ticks.

a7

pdFALSE, /I The timer is a one-shot timer.

0,
can take any value.

/I The id is not used by the callback

vBacklightTime rCallback // The callback function that switche

the LCD back-light off.
)i

if(xBacklightTimer == NULL)

/I The timer was not created.

}
else
{
/I Start the timer. No block time is spec ified, and even if one was
/I it would be ignored because the schedul er has not yet been
I/ started.
if(XTimerStart(xBacklightTimer, 0) !=p dPASS)
/I The timer could not be set into the Active state.
}
}

...
/I Create tasks here.
...

/I Starting the scheduler will start the timer running as it has already
/I been set into the active state.

xTaskStartScheduler();

/I Should not reach here.
for(;;);

xTimerStartFromISR

portBASE_TYPE xTimerStartFromISR(xTimerHandle xT imer,
portBASE_TYPE *pxHigherPriorityTaskWoken);

A version of xTimerStart() that can be called framinterrupt service routine.

Parameters:

XTimer

The handle of the timer being started/restarted.

pxHigherPriorityT
askWoken

The timer service/daemon task spends most ofiis in the Blocked state,
waiting for messages to arrive on the timer comnguelie. Calling
xTimerStartFromISR() writes a message to the tiooenmand queue, so has
the potential to transition the timer service/daartask out of the Blocked
state. If calling xTimerStartFromISR() causes fhreet service/daemon task t
leave the Blocked state, and the timer serviceihdaetask has a priority eque
to or greater than the currently executing task sk that was interrupted),
then *pxHigherPriorityTaskWoken will get set to @RUE internally within
the xTimerStartFromISR() function. If xTimerStamimISR() sets this value
to pdTRUE then a context switch should be perforimeftire the interrupt
exits.

Returns:

SO

pdFAIL will be returned if the start command coulat be sent to the timer command queue. pdPASSwiteturned

if the command was successfully sent to the tiroemroand queue. When the command is actually prodesitie

depend on the priority of the timer service/daerask relative to other tasks in the system, althahg timers expiry
time is relative to when xTimerStartFromISR() isuadly called. The timer service/daemon task piyos set by the
configTIMER_TASK_PRIORITY configuration constant.

Example usage:

48

/I This scenario assumes xBacklightTimer has alrea
Il key is pressed, an LCD back-light is switched o

I/l without a key being pressed, then the LCD back-
// this case, the timer is a one-shot timer, and u

/I the xTimerReset() function, the key press event

/I service routine.

/I The callback function assigned to the one-shot
/I parameter is not used.
void vBacklightTimerCallback(XTIMER *pxTimer)

/I The timer expired, therefore 5 seconds must
/I was pressed. Switch off the LCD back-light
vSetBacklightState(BACKLIGHT_OFF);

}

/I The key press interrupt service routine.
void vKeyPressEventinterruptHandler(void)

{
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

/I Ensure the LCD back-light is on, then resta
/I responsible for turning the back-light off

Il key inactivity. This is an interrupt servi

/I call FreeRTOS API functions that end in "Fr
vSetBacklightState(BACKLIGHT_ON);

/I xTimerStartFromISR() or xTimerResetFromISR(
/I as both cause the timer to re-calculate its

/I xHigherPriorityTaskWoken was initialised to

/l declared (in this function).

if(xTimerStartFromISR(xBacklightTimer, &xHig

/I The start command was not executed succ
/I action here.

}

/I Perform the rest of the key processing here

/'If xHigherPriorityTaskWoken equals pdTRUE,
/I should be performed. The syntax required t
/l from inside an ISR varies from port to port

/I compiler. Inspect the demos for the port y

/I actual syntax required.

if(xHigherPriorityTaskWoken != pdFALSE)

/I Call the interrupt safe yield function
/I depends on the FreeRTOS port being used

}
}

xTimerStopFromISR

portBASE_TYPE xTimerStopFromISR(xTimerHandle xTi

portBASE_TYPE *pxHigherPriorityTaskWoken

dy been created. When a
n. If 5 seconds pass

light is switched off. In
nlike the example given for
handler is an interrupt

timer. In this case the

have passed since a key

rt the timer that is
after 5 seconds of

ce routine so can only
omISR".

) could be called here

expiry time.

pdFALSE when it was
herPriorityTaskWoken) != pdPASS)

essfully. Take appropriate

then a context switch

o perform a context switch
, and from compiler to

ou are using to find the

here (actual function

mer,

A version of xTimerStop() that can be called fromiaterrupt service routine.

Parameters:
XTimer The handle of the timer being stopped.
pxHigherPriorityT | The timer service/daemon task spends most ohits ih the Blocked state,
askWoken waiting for messages to arrive on the timer comngunelie. Calling

xTimerStopFromISR() writes a message to the tinsemmoand queue, so has
the potential to transition the timer service/daarnask out of the Blocked

49

state. If calling xTimerStopFromISR() causes theeti service/daemon task to
leave the Blocked state, and the timer servicelhadaetask has a priority equa

to or greater than the currently executing task ttsk that was interrupted),
then *pxHigherPriorityTaskWoken will get set to @RUE internally within

the xTimerStopFromISR() function. If xTimerStopFri8R() sets this value to

pdTRUE then a context switch should be performddrbehe interrupt exits.

Returns:

pdFAIL will be returned if the stop command coulat be sent to the timer command queue. pdPAS Switeturned
if the command was successfully sent to the tiroemroand queue. When the command is actually prodesitie
depend on the priority of the timer service/daerask relative to other tasks in the system. Thetiservice/daemon
task priority is set by the configTIMER_TASK_PRIORM configuration constant.

Example usage:

/I This scenario assumes xTimer has already been c
/I an interrupt occurs, the timer should be simply

/I The interrupt service routine that stops the ti
void vAnExamplelnterruptServiceRoutine(void)

{
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

/I The interrupt has occurred - simply stop th

/I xHigherPriorityTaskWoken was set to pdFALSE
/I (within this function). As this is an inte

/I FreeRTOS API functions that end in "FromISR
if(XTimerStopFromISR(xTimer, &xHigherPriorit

/I The stop command was not executed succe
/l action here.

}

/'If xHigherPriorityTaskWoken equals pdTRUE,
/I should be performed. The syntax required t
/l from inside an ISR varies from port to port

/I compiler. Inspect the demos for the port y

/I actual syntax required.

if(xHigherPriorityTaskWoken != pdFALSE)

/I Call the interrupt safe yield function
/I depends on the FreeRTOS port being used
}
}

xTimerChangePeriodFromISR

portBASE_TYPE xTimerChangePeriodFromISR(xTimerHan

portTickType xNewPeriod,
portBASE_TYPE *pxHigherPriorityTaskWoken

reated and started. When
stopped.

mer.

e timer.

where it was defined

rrupt service routine, only

" can be used.
yTaskWoken) = pdPASS)

ssfully. Take appropriate

then a context switch

o perform a context switch
, and from compiler to

ou are using to find the

here (actual function

dle xTimer,

);

A version of xTimerChangePeriod() that can be ddaliem an interrupt service routine.

Parameters:
XTimer The handle of the timer that is having its perbdnged.
xNewPeriod The new period for xTimer. Timer periods are $fgt in tick periods, so the

constant portTICK_RATE_MS can be used to convéirna that has been
specified in milliseconds. For example, if the tmeust expire after 100 ticks
then xNewPeriod should be set to 100. Alternativiélthe timer must expire
after 500ms, then xNewPeriod can be set to (HtTICK_RATE_MS)
provided configTICK_RATE_HZ is less than or equalL000.

pxHigherPriorityT

The timer service/daemon task spends most ohiis i the Blocked state,

50

askWoken waiting for messages to arrive on the timer comingueue. Calling
xTimerChangePeriodFromISR() writes a message ttirtter command
queue, so has the potential to transition the teeevice/ daemon task out of
the Blocked state. If calling xTimerChangePeriodf®R() causes the timer
service/daemon task to leave the Blocked statetrentimer service/daemon
task has a priority equal to or greater than threeatly executing task (the task
that was interrupted), then *pxHigherPriorityTaskkga will get set to
pdTRUE internally within the xTimerChangePeriodFt8R() function. If
xTimerChangePeriodFromISR() sets this value to ddERhen a context
switch should be performed before the interruptsexi

Returns:
pdFAIL will be returned if the command to change timers period could not be sent to the timer caminqueue.
pdPASS will be returned if the command was sucaligsent to the timer command queue. When the canthis
actually processed will depend on the priorityld timer service/daemon task relative to otherstaskhe system. The
timer service/daemon task priority is set by thefigh IMER_TASK_PRIORITY configuration constant.

Example usage:

/I This scenario assumes xTimer has already been c reated and started. When
/I an interrupt occurs, the period of xTimer shoul d be changed to 500ms.
/I The interrupt service routine that changes the period of xTimer.

void vAnExamplelnterruptServiceRoutine(void)

{
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

/I The interrupt has occurred - change the per iod of xTimer to 500ms.
/I xHigherPriorityTaskWoken was set to pdFALSE where it was defined
/I (within this function). As this is an inte rrupt service routine, only
/I FreeRTOS API functions that end in "FromISR " can be used.
if(xTimerChangePeriodFromISR(xTimer, &xHighe rPriorityTaskWoken) != pdPASS)
/I The command to change the timers period was not executed
/I successfully. Take appropriate action here.
}
/I If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
/I should be performed. The syntax required t o perform a context switch
/l from inside an ISR varies from port to port , and from compiler to
/I compiler. Inspect the demos for the port y ou are using to find the

/l actual syntax required.
if(xHigherPriorityTaskWoken != pdFALSE)
{

/I Call the interrupt safe yield function here (actual function

/I depends on the FreeRTOS port being used

}
}

xTimerResetFromISR

portBASE_TYPE xTimerResetFromISR(xTimerHandle xT imer,
portBASE_TYPE *pxHigherPriorityTaskWoken);

A version of xTimerReset() that can be called framminterrupt service routine.

Parameters:
XTimer The handle of the timer that is to be starteset;eor restarted.
pxHigherPriorityT | The timer service/daemon task spends most ofits th the Blocked state,
askWoken waiting for messages to arrive on the timer comnguelie. Calling
xTimerResetFromISR() writes a message to the touermand queue, so has

51

the potential to transition the timer service/daarnask out of the Blocked
state. If calling xTimerResetFromISR() causes itmet service/daemon task
to leave the Blocked state, and the timer sendaefmon task has a priority
equal to or greater than the currently executisg {the task that was
interrupted), then *pxHigherPriorityTaskWoken wgkt set to pd TRUE
internally within the xTimerResetFromISR() functidh
xTimerResetFromISR() sets this value to pd TRUE thepntext switch
should be performed before the interrupt exits.

Returns:
pdFAIL will be returned if the reset command contit be sent to the timer command queue. pdPASSwiteturned
if the command was successfully sent to the tinoemroand queue. When the command is actually prodegde
depend on the priority of the timer service/daerawk relative to other tasks in the system, althahg timers expiry
time is relative to when xTimerResetFromISR() ituatly called. The timer service/daemon task ptyas set by the
configTIMER_TASK_PRIORITY configuration constant.

Example usage:

/I This scenario assumes xBacklightTimer has alrea dy been created. When a
Il key is pressed, an LCD back-light is switched o n. If 5 seconds pass

/I without a key being pressed, then the LCD back- light is switched off. In

/[this case, the timer is a one-shot timer, and u nlike the example given for
/I the xTimerReset() function, the key press event handler is an interrupt

/I service routine.

/I The callback function assigned to the one-shot timer. In this case the
/I parameter is not used.
void vBacklightTimerCallback(XTIMER *pxTimer)

/I The timer expired, therefore 5 seconds must have passed since a key
/I was pressed. Switch off the LCD back-light
vSetBacklightState(BACKLIGHT_OFF);

}

Il The key press interrupt service routine.
void vKeyPressEventinterruptHandler(void)

{
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

/I Ensure the LCD back-light is on, then reset the timer that is

/Il responsible for turning the back-light off after 5 seconds of

Il key inactivity. This is an interrupt servi ce routine so can only

/I call FreeRTOS API functions that end in "Fr omISR".

vSetBacklightState(BACKLIGHT_ON);

/I xTimerStartFromISR() or xTimerResetFromISR() could be called here

/I as both cause the timer to re-calculate its expiry time.

/I xHigherPriorityTaskWoken was initialised to pdFALSE when it was

/l declared (in this function).

if(XTimerResetFromISR(xBacklightTimer, &xHig herPriorityTaskWoken) != pdPASS)
/I The reset command was not executed succ essfully. Take appropriate
/l action here.

}

/I Perform the rest of the key processing here

/I If xHigherPriorityTaskWoken equals pdTRUE, then a context switch

/I should be performed. The syntax required t o perform a context switch

/l from inside an ISR varies from port to port , and from compiler to

/I compiler. Inspect the demos for the port y ou are using to find the

/I actual syntax required.
if(xHigherPriorityTaskWoken != pdFALSE)

/I Call the interrupt safe yield function here (actual function
/I depends on the FreeRTOS port being used

}
}

52

Co-routines

xCoRoutineCreate

croutine. h

portBASE_TYPE xCoRoutineCreate(
crCOROUTINE_CODE p
unsigned portBASE_
unsigned portBASE_

);

xCoRoutineCode,
TYPE uxPriority,
TYPE uxIndex

Create a new co-routine and add it to the listosfautines that are ready to run.

Parameters:

pxCoRoutineCode | Pointer to the co-routine function. Co-routinedtions require special syntax
see the co-routine section of the WEB documentdtomore information.

uxPriority The priority with respect to other co-routinesvich the co-routine will run.

uxlndex Used to distinguish between different co-routitiest execute the same
function. See the example below and the co-rowgaution of the WEB
documentation for further information.

Returns:

pdPASS if the co-routine was successfully createtialded to a ready list, otherwise an error cedieed with

ProjDefs.h.

Example usage:

/I Co-routine to be created.
void vFlashCoRoutine(xCoRoutineHandle xHandle, un

/I Variables in co-routines must be declared stati
/I This may not be necessary for const variables.
static const char cLedToFlash[2]={5,6};

static const portTickType uxFlashRates[2] = { 20

/I Must start every co-routine with a call to
CrSTART(xHandle);

for(;;)
{

/I This co-routine just delays for a fixed

/l an LED. Two co-routines are created us

/I the uxIndex parameter is used to tell t

/I LED to flash and how long to delay. Th

/I already been created.

vParTestToggleLED(cLedToFlash[uxindex]

crDELAY(xHandle, uxFlashRates[uxindex]
}

/I Must end every co-routine with a call to cr
crEND();
}

/I Function that creates two co-routines.
void vOtherFunction(void)

unsigned char ucParameterToPass;
xTaskHandle xHandle;

/I Create two co-routines at priority 0. The

/I so (from the code above) toggles LED 5 ever
/l'is given index 1 so toggles LED 6 every 400
for(uxIndex = 0; uxIndex < 2; uxindex++)

signed portBASE_TYPE uxIndex)

c if they must maintain value across a blocking cal

0, 400 };

CcrSTART();

period, then toggles

ing this function, so

he co-routine which

is assumes xQueue has

);
);

END();

first is given index O
y 200 ticks. The second
ticks.

53

xCoRoutineCreate(vFlashCoRoutine, 0, uxin
}
}

vCoRoutineSchedule

croutine. h
void vCoRoutineSchedule(void);

Run a co-routine.

dex);

vCoRoutineSchedule() executes the highest pri@dtyoutine that is able to run. The co-routine weecute
until it either blocks, yields or is preempted bytagk. Co-routines execute cooperatively so oneoatine
cannot be preempted by another, but can be predrbpta task.

If an application comprises of both tasks and agines then vCoRoutineSchedule should be calleoh fifze

idle task (in an idle task hook).

Example usage:

/I This idle task hook will schedule a co-routine
/I The rest of the idle task will execute between
void vApplicationldleHook(void)

vCoRoutineSchedule();
}

/I Alternatively, if you do not require any other
/I execute, the idle task hook can call vCoRoutine
/I infinite loop.
void vApplicationldleHook(void)
{
for(;;)
{

vCoRoutineSchedule();
}
}

CrSTART

croutine. h
crSTART(xCoRoutineHandle xHandle);

each time it is called.
co-routine calls.

part of the idle task to
Scheduler() within an

This macro MUST always be called at the start cd-aoutine function.

Example usage:
/I Co-routine to be created.

void vVACoRoutine(xCoRoutineHandle xHandle, unsign

/I Variables in co-routines must be declared stati
static long ulAVariable;

/I Must start every co-routine with a call to
CrSTART(xHandle);

for(;;)

/I Co-routine functionality goes here.

}

/I Must end every co-routine with a call to cr
crEND();

ed portBASE_TYPE uxIndex)

c if they must maintain value across a blocking cal

CcrSTART();

END();

54

crEND

croutine. h
crEND();

This macro MUST always be called at the end of-eocine function.

Example usage:
/I Co-routine to be created.

void vACoRoutine(xCoRoutineHandle xHandle, unsign ed portBASE_TYPE uxIndex)
/I Variables in co-routines must be declared stati c if they must maintain value across a blocking cal
static long ulAVariable;
/I Must start every co-routine with a call to crSTART();
CrSTART(xHandle);
for(;;)
/I Co-routine functionality goes here.
}
/I Must end every co-routine with a call to cr END();
crEND();
}
crDELAY
croutine. h
crDELAY(xCoRoutineHandle xHandle, portTickType xT icksToDelay);

Delay a co-routine for a fixed period of time.

CrDELAY can only be called from the co-routine ftioa itself - not from within a function called khe
co-routine function. This is because co-routinesdbmaintain their own stack.

Parameters:
xHandle The handle of the co-routine to delay. This &sxklandle parameter of the
co-routine function.
xTickToDelay The number of ticks that the co-routine shoulidyéor. The actual amount of

time this equates to is defined by configTICK_RAHZ (set in
FreeRTOSConfig.h). The constant portTICK_RATE_MS8 ba used to
convert ticks to milliseconds.

Example usage:
/I Co-routine to be created.

void vACoRoutine(xCoRoutineHandle xHandle, unsign ed portBASE_TYPE uxIndex)
{
/I Variables in co-routines must be declared stati c if they must maintain value across a blocking cal

/I This may not be necessary for const variables.
/I We are to delay for 200ms.
static const xTickType xDelayTime = 200 / portTICK _RATE_MS;

/I Must start every co-routine with a call to crSTART();
crSTART(xHandle);

for(;;)

// Delay for 200ms.
crDELAY(xHandle, xDelayTime);

55

/I Do something here.

}

/I Must end every co-routine with a call to cr END();

crEND();

crQUEUE_SEND

crQUEUE_SEND(

xCoRoutineHandle xHandle,
xQueueHandle pxQueue,

void *pvlitemToQueue,

portTickType xTicksToWait,

portBASE_TYPE *px
)

Result

The macro's crQUEUE_SEND() and crQUEUE_RECEIVEE) the co-routine equivalent to the xQueueSend()
and xQueueReceive() functions used by tasks.

crQUEUE_SEND and crQUEUE_RECEIVE can only be ugethfa co-routine whereas xQueueSend() and
xQueueReceive() can only be used from tasks.

crQUEUE_SEND can only be called from the co-roufitmection itself - not from within a function catieby

the co-routine function.

This is because co-roustithe not maintain their own stack.

See the co-routine section of the WEB documentatasninformation on passing data between tasks and

co-routines and betwee

n ISR's and co-routines.

Parameters:
xHandle The handle of the calling co-routine. This is ¥fandle parameter of the
co-routine function.
pxQueue The handle of the queue on which the data wilbdsted. The handle is

obtained as the return value when the queue isettesing the
xQueueCreate() API function.

pvlitemToQueue

A pointer to the data being posted onto the qu€&he number of bytes of each
gqueued item is specified when the queue is creatad.number of bytes is
copied from pvitemToQueue into the queue itself.

xTickToDelay

The number of ticks that the co-routine shoulztklto wait for space to
become available on the queue, should space retdikable immediately.
The actual amount of time this equates to is ddfine
configTICK_RATE_HZ (set in FreeRTOSConfig.h). Thenstant
portTICK_RATE_MS can be used to convert ticks tdliseconds (see
example below).

pxResult

The variable pointed to by pxResult will be septPASS if data was
successfully posted onto the queue, otherwiselliteiset to an error defined
within ProjDefs.h.

Example usage:

/I Co-routine function that blocks for a fixed per iod then posts a number onto

/I a queue.

static void prvCoRoutineFlashTask(xCoRoutineHand| e xHandle, unsigned portBASE_TYPE uxIndex)
/I Variables in co-routines must be declared stati c if they must maintain value across a blocking cal

static portBASE_TYPE xNumberToPost = 0;

static portBASE_TYPE xResult;

/I Co-routines must begin with
crSTART(xHandle);

for(;;)

a call to crSTAR T().

56

/I This assumes the queue has already been created.
crQUEUE_SEND(xHandle, xCoRoutineQueue, &xN umberToPost, NO_DELAY, &xResult);

if(xResult I= pdPASS)

/I The message was not posted!

}

/I Increment the nhumber to be posted onto t he queue.

XNumberToPost++;

/I Delay for 100 ticks.
crDELAY(xHandle, 100);

}

/I Co-routines must end with a call to crEND().

crEND();

crQUEUE_RECEIVE

croutine. h
crQUEUE_RECEIVE(

xCoRoutineHandle xHandle,

void *pvBuffer,

xQueueHandle pxQueue,

portTickType xTicksToWait,
portBASE_TYPE *pxResult

)

The macro's crQUEUE_SEND() and crQUEUE_RECEIVEE) the co-routine equivalent to the xQueueSend()

and xQueueReceive() functions used by tasks.

crQUEUE_SEND and crQUEUE_RECEIVE can only be ugsedhfa co-routine whereas xQueueSend() and

xQueueReceive() can only be used from tasks.

crQUEUE_RECEIVE can only be called from the co-moaitfunction itself - not from within a function lted
by the co-routine function. This is because coimast do not maintain their own stack.

See the co-routine section of the WEB documentataninformation on passing data between tasks and

co-routines and between ISR's and co-routines.

Parameters:

xHandle

The handle of the calling co-routine. This is ¥fandle parameter of the
co-routine function.

pxQueue

The handle of the queue from which the datalvélreceived. The handle is
obtained as the return value when the queue isettesing the
xQueueCreate() API function.

pvBuffer

The buffer into which the received item is todepied. The number of bytes
of each queued item is specified when the queaeed. This number of
bytes is copied into pvBuffer.

xTickToDelay

The number of ticks that the co-routine shoutethklto wait for data to
become available from the queue, should data navaigable immediately.
The actual amount of time this equates to is ddfine
configTICK_RATE_HZ (set in FreeRTOSConfig.h). Thenstant
portTICK_RATE_MS can be used to convert ticks tdlisgconds (see the
crQUEUE_SEND example).

pxResult

The variable pointed to by pxResult will be septPASS if data was
successfully retrieved from the queue, otherwiseélitbe set to an error code
as defined within ProjDefs.h.

Example usage:

57

/I A co-routine receives the number of an LED to f lash from a queue. It

/Il blocks on the queue until the number is receive d.
static void prvCoRoutineFlashWorkTask(xCoRoutineH andle xHandle, unsigned portBASE_TYPE uxIndex)
/I Variables in co-routines must be declared stati c if they must maintain value across a blocking cal

static portBASE_TYPE xResult;
static unsigned portBASE_TYPE uxLEDToFlash;

/I All co-routines must start with a call to cr START().
CrSTART(xHandle);
for(;;)
{
/I Wait for data to become available on the gueue.
crQUEUE_RECEIVE(xHandle, xCoRoutineQueue, &UXLEDTOFlash, portMAX_DELAY, &xResult);

if(xResult == pdPASS)

/I We received the LED to flash - flash it!
vParTestToggleLED(uxLEDToFlash);

}
}

crEND();

crQUEUE_SEND_FROM_ISR

croutine. h

crQUEUE_SEND_FROM_ISR(
xQueueHandle pxQueue,
void *pvitemToQueue,
portBASE_TYPE xCoRoutin ePreviouslyWoken
)

The macro's crQUEUE_SEND FROM_ISR() and crQUEUE_RBAE_FROM_ISR() are the co-routine
equivalent to the xQueueSendFromISR() and xQuewaRegeromISR() functions used by tasks.

CrQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM(E can only be used to pass data
between a co-routine and and ISR, whereas xQuedé8enISR() and xQueueReceiveFromISR() can only be
used to pass data between a task and and ISR.

crQUEUE_SEND_FROM_ISR can only be called from aR I8 send data to a queue that is being used from
within a co-routine.

See the co-routine section of the WEB documentatasninformation on passing data between tasks and
co-routines and between ISR's and co-routines.

Parameters:
xQueue The handle to the queue on which the item istpdsted.
pvitemToQueue A pointer to the item that is to be placed ondheue. The size of the items

the queue will hold was defined when the queuea@ated, so this many
bytes will be copied from pvitemToQueue into thege storage area.
xCoRoutinePrevio | This is included so an ISR can post onto the samee& multiple times from &
usl yWoken single interrupt. The first call should always paspdFALSE. Subsequent
calls should pass in the value returned from tle®ipus call.

Returns:

pdTRUE if a co-routine was woken by posting ont® dgjueue. This is used by the ISR to determinedrdext switch
may be required following the ISR.

Example usage:

/I A co-routine that blocks on a queue waiting for characters to be received.
static void vReceivingCoRoutine(xCoRoutineHandle xHandle, unsigned portBASE_TYPE uxIndex)

58

char cRxedChar;
portBASE_TYPE xResult;

/I All co-routines must start with a call to ¢
CrSTART(xHandle);

for(;;)
{

/I Wait for data to become available on th
/I gueue xCommsRxQueue has already been cr
crQUEUE_RECEIVE(xHandle, xCommsRxQueue, &

/l Was a character received?
if(xResult == pdPASS)
{

/I Process the character here.

}
}

/I All co-routines must end with a call to crE
crEND();
}

/I An ISR that uses a queue to send characters rec
/I a co-routine.
void VUART_ISR(void)

char cRxedChar;
portBASE_TYPE xCRWokenByPost = pdFALSE;

/I We loop around reading characters until the
while(UART_RX_REG_NOT_EMPTY())
{
/I Obtain the character from the UART.
cRxedChar = UART_RX_REG;

/I Post the character onto a queue. XxCRWo

/I the first time around the loop. If the

/ to be woken (unblocked) then xCRWokenBy

/I In this manner we can ensure that if mo

/I blocked on the queue only one is woken

/I many characters are posted to the queue
XCRWokenByPost = crQUEUE_SEND_FROM_ISR(xC

crQUEUE_RECEIVE_FROM_ISR

croutine. h
crQUEUE_RECEIVE_FROM_ISR(

xQueueHandle pxQueue,

void *pvBuffer,
portBASE_TYPE * pxCoRou
)

ISTART().

e queue. This assumes the
eated!
uxLEDToFlash, portMAX_DELAY, &xResult);

ND().

eived on a serial port to

re are none left in the UART.

kenByPost will be pdFALSE
post causes a co-routine
Post will be set to pdTRUE.
re than one co-routine is

by this ISR no matter how

ommsRxQueue, &cRxedChar, xCRWokenByPost);

tineWoken

The macro's crQUEUE_SEND FROM_ISR() and crQUEUE_RBAE_FROM_ISR() are the co-routine

equivalent to the xQueueSendFromISR() and xQuewsRegeromISR() functions used by tasks.

CrQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM(E can only be used to pass data
between a co-routine and and ISR, whereas xQuede&anISR() and xQueueReceiveFromISR() can only be
used to pass data between a task and and ISR.

crQUEUE_RECEIVE_FROM_ISR can only be called fromI&R to receive data from a queue that is being
used from within a co-routine (a co-routine pogtethe queue).

59

See the co-routine section of the WEB documentatarninformation on passing data between tasks and
co-routines and between ISR's and co-routines.

Parameters:
xQueue The handle to the queue on which the item istpdisted.
pvBuffer A pointer to a buffer into which the receiveditavill be placed. The size of

the items the queue will hold was defined whendgheue was created, so this
many bytes will be copied from the queue into p¥Buf

pxCoRoutineWoke | A co-routine may be blocked waiting for space todyae available on the
n queue. If crQUEUE_RECEIVE_FROM_ISR causes such-@atine to
unblock *pxCoRoutineWoken will get set to pdTRUEherwise
*pxCoRoutineWoken will remain unchanged.

Returns:

pdTRUE an item was successfully received from tineug, otherwise pdFALSE.

Example usage:

/I A co-routine that posts a character to a queue
/I period. The character is incremented each time
static void vSendingCoRoutine(xCoRoutineHandle xH

/I cChar holds its value while this co-routine is
/I be declared static.

static char cCharToTx = 'a’;

portBASE_TYPE xResult;

/I All co-routines must start with a call to ¢
crSTART(xHandle);

for(;;)
{

/I Send the next character to the queue.
crQUEUE_SEND(xHandle, xCoRoutineQueue, &c

if(xResult == pdPASS)

/I The character was successfully post

}

else

/I Could not post the character to the queue.

}

/l Enable the UART Tx interrupt to cause a
/I hypothetical UART. The interrupt will obtain
/l from the queue and send it.
ENABLE_RX_INTERRUPT();

/I Increment to the next character then block fo
/I cCharToTx will maintain its value across the
/I declared static.

cCharToTx++;

if(cCharToTx > 'x')

cCharToTx ='a’;
}
crDELAY/(100);

/I All co-routines must end with a call to crE
crEND();

/I An ISR that uses a queue to receive characters
void VUART_ISR(void)

{
char cCharToTx;
portBASE_TYPE xCRWokenByPost = pdFALSE;

then blocks for a fixed
;andle, unsigned portBASE_TYPE uxIndex)

blocked and must therefore

rSTART().

CharToTx, NO_DELAY, &xResult);
ed to the queue.

n interrupt in this

the character

r a fixed period.
delay as it is

NDJ).

to send on a UART.

60

while(UART_TX_REG_EMPTY())

/I Are there any characters in the queue w
/Il xCRWokenByPost will automatically be set to p
/'is woken by the post - ensuring that only a s
/I woken no matter how many times we go around t
if(crQUEUE_RECEIVE_FROM_ISR(pxQueue, &cC

SEND_CHARACTER(cCharToTx);
}

}

}

aiting to be sent?

dTRUE if a co-routine

ingle co-routine is

his loop.

harToTx, &CRWokenByPost))

61

Data Structure Documentation

corCoRoutineControlBlock Struct Reference

Data Fields

crCOROUTINE_CODBxCoRoutineFunction
xListltem xGenericListltem

xListltem xEventListltem

unsigned portBASE_TYPEXxPriority
unsigned portBASE_TYPEXxI ndex

unsigned shomixState

The documentation for this struct was generateh fitee following file:

* include/croutine.h

62

QueueDefinition Struct Reference

Data Fields

* signed char pcHead

* signed char PpcTail

e signed char pcWriteTo

e signed char pcReadFrom

e xList xTasksWaitingToSend

e xList xTasksWaitingT oReceive

e volatile unsigned portBASE_TYP&xM essagesW aiting
e unsigned portBASE_TYPEXL ength

e unsigned portBASE_TYPExItemSize
e signed portBASE_TYPKRXL ock

e signed portBASE_TYPKTxL ock

The documentation for this struct was generateh fitee following file:
e ueue.c

63

tskTaskControlBlock Struct Reference

Data Fields

e volatile portSTACK_TYPE *pxTopOfStack

e xListitemxGenericListltem

e xListltemxEventListltem

e unsigned portBASE_TYPEXPriority

e poOrtSTACK_TYPE *pxStack

e signed chapcTaskName [configMAX_TASK_NAME_LEN]

The documentation for this struct was generateh fitte following file:

e tasks.c

64

XLIST Struct Reference

Data Fields

« volatile unsigned portBASE_TYP&Number Ofltems
« volatilexListltem * pxIndex
¢ volatilexMiniListltem xListEnd

The documentation for this struct was generateh fitte following file:
e include/list.h

65

XLIST_ITEM Struct Reference

Data Fields

e portTickTypexltemValue

e structxLIST_ITEM * pxNext

e structxLIST_ITEM * pxPrevious
e void * pvOwner

e void * pvContainer

The documentation for this struct was generateh fitee following file:
¢ include/list.h

66

XMEMORY_REGION Struct Reference

Data Fields

e void * pvBaseAddress
e unsigned longilL engthlnBytes
e unsigned longilParameters

The documentation for this struct was generateh fitte following file:
e include/task.h

67

XMINI_LIST_ITEM Struct Reference

Data Fields

e portTickTypexltemValue
e structxLIST_ITEM * pxNext
e structxLIST_ITEM * pxPrevious

The documentation for this struct was generateh fitte following file:
e include/list.h

68

XTASK _PARAMTERS Struct Reference

Data Fields

e pdTASK_CODEpvTaskCode

e const signed char *conptName

e unsigned shomisStackDepth

e void * pvParameters

e unsigned portBASE_TYPExPriority

e portSTACK_TYPE *puxStackBuffer

« xMemoryRegiorxRegions [portNUM_CONFIGURABLE_REGIONS]

The documentation for this struct was generateh fitee following file:
¢ include/task.h

69

XTIME_OUT Struct Reference

Data Fields

e portBASE_TYPExOverflowCount
e portTickTypexTimeOnEntering

The documentation for this struct was generateh fitee following file:
e include/task.h

70

Index

corCoRoutineControlBlock; 62
Co-routines; 53
FreeRTOS-MPU Specific; 16
Kernel Control; 13
QueueDefinition; 63

Queues; 18

Semaphore / Mutexes; 32
Software Timers; 40

Task Control; 6

Task Creation; 5

Task Utilities; 11
tskTaskControlBlock; 64
XLIST; 65

XLIST_ITEM; 66
XMEMORY_REGION; 67
XMINI_LIST_ITEM; 68
XTASK_PARAMTERS; 69
XTIME_OUT,; 70

71

