
Notes
Fr: A.C. Verbeck
To: File
Re: FreeRTOS example notes
Port: NXP LPC1788
Board:Haoyu Electronics HY-LPC1788-Core / HY-LPC1788-SDK
Date: April 20, 2013

Introduction
The examples in this port are from Using the FreeRTOS Real Time Kernel – A Practical Guide. This 
book can be purchased from the FreeRTOS shop. The book is a primer on RTOS usage targeted at 
ARM Cortex M3 processors.  It comes with sixteen excellent examples. These are designed to run on 
the Keil μVision4 simulator.  It is possible to get a demo version of the Keil MDK for free.  However, 
it's very limited.  The full version of the base Keil product is 5000USD.  The more capable Professional 
Edition is even more.

Rowley Associates have a similar platform based on gcc that costs 1500USD for the complete 
professional version.  The single-user Personal License version is a very reasonable 150USD. I have 
been using this system for about six months now and I find it as good as the Keil offering. I can move 
projects from Keil to CrossWorks in minutes.

The HY-LPC1788-Core / HY-LPC1788-SDK board set is an excellent system for working with NXP 
processors.  The core processor board has: 12 MHz crystal main oscillator, 32.768 kHz crystal for Real 
Time Clock, LCD interface with back-light and touch panel circuit, EMC 32MB 16bit data bus 
SDRAM memory, EMC 128M NAND FLASH memory, EMC 8MB NOR FLASH memory, 2MB SPI 
FLASH memory, and 256Mbit EEPROM memory.  The SDK board has 100/10M Ethernet interface, 
USB to serial port, connect UART0 (for ISP and debugging), two DB9 RS232 serial ports, two mini 
USB 2.0 device interface, two USB Host 2.0 interface, micro SD card slot, standard 2.54mm JTAG 
interface, I2S interface based on UDA1380HN, 3.5mm stereo audio output, 3.5mm stereo audio input, 
3.5mm microphone input, two CAN 2.0B bus interface, one RS485 bus interface, 7 user buttons and 
2MB SPI FLASH. It costs 120USD with a 4.3in LCD; 135USD with a 5in LCD, and 150USD with a 
7in LCD. There is also a 32bit SDRAM version as well for 10USD more.  Shipping is free.

In this port, the basic idea was to use as little of the platform as possible: this is done to completely 
eliminate any issues that may arise do to specific hardware configuration.  This port uses the Cortex 
M3 core, internal RAM and FLASH, the SysTick timer, and last the 

A.C. Verbeck Page: 1 FreeRTOS example notes



I have ported these examples to the following configuration:

Tool/System Manufacturer Version

IDE Rowley Associates CrossWorks v2.3.1

RTOS Real Time Engineers Ltd. FreeRTOS v7.4.0

Processor NXP LPC1788

Processor Board HAOYU HY-LPC1788-Core

Base board HAOYU HY-LPC1788-SDK

FreeRTOS v7.4.0 port notes
There is still no prvSetupHardware() function in this FreeRTOS port. Normally, this function is used to 
configure the hardware prior to starting the RTOS. Rowley use the traditional CMSIS SystemInit() to 
initialize the processor in LPC177x_8x_Startup.s: I have added the SystemCoreClockUpdate() to 
LPC177x_8x_Startup.s to verify that the clock is at the expected frequency.

#define configCPU_CLOCK_HZ ( 120000000 )
#define configTICK_RATE_HZ ( ( portTickType ) 100 )

These are the two defines associated with the SysTick interrupt.  The  configCPU_CLOCK_HZ value 
must be set to “..the frequency of the clock that drives the peripheral used to generate the kernels 
periodic tick interrupt. This is very often, but not always, equal to the main system clock frequency.”  

Notes:
1. The external crystal is 12MHz.
2. The PLL is the clock source for the processor. It is configured to operate at 120MHz.
3. The config define configTICK_RATE_HZ defaults to 1000.  This is far too fast for a useful 

implementation. I have set this to a more reasonable 100.

FreeRTOS doesn't need to know the Core CPU frequency. It does need to know the frequency of the 
tick timer. For ARM Cortex processors, the configCPU_CLOCK_HZ define is very misleading because it 
implies that the processor clock is used to define the SysTick timer frequency.  In this case (as well as 
nearly all Cortex processors) the SysTick timer frequency can be significantly different from the CPU 
frequency.

LPC177x_8x_Startup.s has been imported to each example.  This was done to add the 
SystemCoreClockUpdate() call.

A.C. Verbeck Page: 2 FreeRTOS example notes



Example Application Porting Notes

Three interrupts are used for most of the examples.  The fourth interrupt is used in three examples:

#define xPortSysTickHandler     SysTick_Handler
#define xPortPendSVHandler      PendSV_Handler
#define vPortSVCHandler         SVC_Handler
#define vSoftwareInterruptHandler WDG_IRQHandler

1. SysTick_Handler: is the CMSIS 10ms system tick.  This is used to advance the RTOS tick counter. 
This  value controls time-out delays for things like queue's and semaphore's.  It is also used to set 
the time-slice for the round-robin scheduler. In this port, it is set to 1ms.  For the next version of 
this implementation, it will be set to 10ms.

2. PendSV_Handler: This handler is written in assembly language and appears to be the context 
switch function for the RTOS.

3. SVC_Handler: SVC 0 is used to start the first task. It does not appear that any other SVC's are 
used/available.

4. WDG_IRQHandler: This is the watchdog timer. It is used to generate a general interrupt (not a 
watchdog timer interrupt). It is used in example 12, 13, and 14.  It is the first interrupt past the 
standard Cortex-M3 system interrupts.  That's the only reason this interrupt vector was selected.

I have looked in current versions of both the Using the FreeRTOS Real Time Kernel and FreeRTOS 
Reference Manual. There is no description of the internals of FreeRTOS, so my notes above are open to 
interpretation. However, there is a reference to these three interrupts in Using the FreeRTOS Real Time 
Kernel.  On page 5, it states: FreeRTOS makes use of the SysTick, PendSV, and SVC interrupts. These 
interrupts are not available for use by the application.

There were a number of changes to the example applications:
1. I had to delete references to a TI Stellaris BSP that was not in the system.
2. I modified basic_io.c to use the CrossWorks v2.3.1 debug_print() function. Incidentally, the 

<cross_studio_io.h> I/O system is a very comprehensive facility that works on file input and output 
as well as console I/O.

3. I added a directory called Common that contains common files for all of the examples.  The only 
files that are in the example directories are files that are unique to the example.

4. I have added an “example print” it's clear which example is running.
5. SystemInit() is called in LPC177x_8x_Startup.s.  This function sets the processor clock to be the 

PLL and configures the PLL to 120MHz.
6. After configuration for 120MHz, the function SystemCoreClockUpdate() is called.  This function 

reads the PLL clocking registers and updates SystemCoreClock with the real speed of the core 
clock.

A.C. Verbeck Page: 3 FreeRTOS example notes



ZIP File Structure

Here is the directory tree of the zipped file:

At the top is the common directory, in the middle are the FreeRTOS examples.  At the bottom is the 
RTOS itself, notes (home for this document), the NX lpc177x_8x peripheral drivers and the 
CrossWorks project files.

The examples are arranged just as they are in the book: Example001 to Example016.

A.C. Verbeck Page: 4 FreeRTOS example notes



Compiling / Running the Examples

1. Make sure that the HY-LPC1788-SDK board+core boards are properly assembled, connected, 
and that the JTAG/SWD drivers are installed.  I use a JLINK in my system.  Note: on the HY-
LPC1788-SDK platform SWD is the only debug mode that operates correctly. JTAG does not 
work.

2. Make sure that Rowley Associates CrossWorks v2.3.1 is installed and configured as well. 
Specifically, I use tabs (language settings for C/C++), tabs are tabs (not spaces) and indent and 
tabsize are set to 4.

3. The easiest way to start the IDE is to double click on FreeRTOS_examples.hzp.  This opens the 
Rowley solution workspace.

4. Select the example you'd like to run:  Double click on the project icon, or right click on the 
project and click the “Set as Active Project” entry.

5. Compile the example:  One way is to right click on the project.  Then select Debug → Start 
Debugging.  This will compile the example (if it's out of date) and begin debugging.  Another 
way locate the project explorer cursor on the solution workspace entry (Solution 'FreeRTOS 
examples') then select the Main Menu → Build → Rebuild Solution to build everything.

6. Most of the output from the examples is shown in the CrossWorks Debug Terminal window.  It 
looks like this:

A.C. Verbeck Page: 5 FreeRTOS example notes



Bibliography

[1] The FreeRTOS Reference Manual
Version 1.2.1
Copyright Real Time Engineering 2011
This book is available for 30USD from http://shop.freertos.org
Don't hesitate: If you are going to use FreeRTOS; buy this book.

[2] Using the FreeRTOS Real Time Kernel – A Practical Guide
Third Edition
Copyright Real Time Engineering 2011
This book is available for 35USD from http://shop.freertos.org
If you are going to use FreeRTOS, and this is the first time you've used an RTOS, buy this book.

Bill of Materials
[1] LPC1788 system: Haoyu Electronics HY-LPC1788-Core / HY-LPC1788-SDK
This is a direct link to the development platform.  This particular version has the 7in LCD. It can be 
purchased for $170.  To me this is an amazing price for this system.
http://www.hotmcu.com/hylpc1788-development-board-with-7-touch-screen-tft-lcd-p-39.html?
cPath=1_21 

[2] IDE: Rowley & Associates CrossWorks for ARM v2.3.1
This is a direct link to the IDE vendor Rowley & Associates.  CrossWorksv2.3.1 is an excellent 
platform.  The Personal License version is $150. Another advantage of this platform is that it runs on 
Windows, Linux, and Mac OSX.
http://www.rowley.co.uk/

[3] Debugger: Segger JLINK is the classic system for JTAG/SWD debugging.  More, it can be used by 
nearly any IDE (Keil MDK, IAR EWARM, and of course CrossWorks).  It has excellent tools that can 
be used with debuggers like GDB.  There are a lot of debuggers out there, but this is the only one to 
own.
http://shop-us.segger.com/J_Link_EDU_p/8.08.90.htm 

This paper was produced with LibreOffice v3.5.4.2.  It is an excellent tool.

A.C. Verbeck Page: 6 FreeRTOS example notes

http://shop.freertos.org/
http://shop-us.segger.com/J_Link_EDU_p/8.08.90.htm
http://www.rowley.co.uk/
http://www.hotmcu.com/hylpc1788-development-board-with-7-touch-screen-tft-lcd-p-39.html?cPath=1_21
http://www.hotmcu.com/hylpc1788-development-board-with-7-touch-screen-tft-lcd-p-39.html?cPath=1_21
http://shop.freertos.org/

