
Overview The lwIP is an open source TCP/IP protocol suite available under the BSD license. The lwIP is
a standalone stack; there are no operating systems dependencies, although it can be used
along with operating systems. The lwIP provides two A05PIs for use by applications:

• RAW API: Provides access to the core lwIP stack.

• Socket API: Provides a BSD sockets style interface to the stack.

The 140_v2_00_a is an SDK library that is built on the open source lwIP library version 1.4.0.
The lwip140_v2_00_a library provides adapters for the Ethernetlite (axi_ethernetlite), the
TEMAC (axi_ethernet), and the Gigabit Ethernet controller and MAC (GigE) cores. The library
can run on MicroBlaze™ and ARM Cortex-A9 processors. The Ethernetlite and TEMAC cores
apply for MicroBlaze systems. The Gigabit Ethernet controller and MAC (GigE) core is
applicable only for ARM Cortex-A9 system (Zynq®-7000 processor devices).

Features The lwIP provides support for the following protocols:

• Internet Protocol (IP)

• Internet Control Message Protocol (ICMP)

• User Datagram Protocol (UDP)

• TCP (Transmission Control Protocol (TCP)

• Address Resolution Protocol (ARP)

• Dynamic Host Configuration Protocol (DHCP)

• Internet Group Message Protocol (IGMP)

Additional
Resources

• lwIP wiki: http://lwip.scribblewiki.com

• Xilinx® lwIP designs and application examples:
http://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf

• lwIP examples using RAW and Socket APIs: http://savannah.nongnu.org/projects/lwip/

• FreeRTOS Port for Zynq is available for download from the FreeRTOS website:
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.
org/forums

UG650 June 4, 2014

lwIP 1.4.0 Library (v2.1)
UG650 June 4, 2014 www.xilinx.com 1

© 2014 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

http://lwip.scribblewiki.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp1026.pdf
http://savannah.nongnu.org/projects/lwip/
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums
http://www.xilinx.com

Using lwIP
Using lwIP The following sections detail the hardware and software steps for using lwIP for networking.
The key steps are:

1. Creating a hardware system containing the processor, ethernet core, and a timer. The
timer and ethernet interrupts must be connected to the processor using an interrupt
controller.

2. Configuring 140_v2_00_a to be a part of the software platform. For operating with lwIP
socket API, the Xilkernel library or FreeRTOS BSP is a prerequisite. See the Note below.

Note: The Xilkernel library is available only for MicroBlaze systems. For Cortex-A9 based systems
(Zynq), there is no support for Xilkernel. Instead, use FreeRTOS. A FreeRTOS BSP is available for
Zynq systems and must be included for using lwIP socket API. The FreeRTOS BSP for Zynq is
available for download from:
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums

Setting up the
Hardware
System

This section describes the hardware configurations supported by lwIP. The key components of
the hardware system include:

• Processor: Either a MicroBlaze or a Cortex-A9 processor. The Cortex-A9 processor
applies to Zynq systems.

• MAC: LwIP supports axi_ethernetlite, axi_ethernet, and Gigabit Ethernet controller and
MAC (GigE) cores.

• Timer: to maintain TCP timers, lwIP raw API based applications require that certain
functions are called at periodic intervals by the application. An application can do this by
registering an interrupt handler with a timer.

• DMA: For axi_ethernet based systems, the axi_ethernet cores can be configured with a
soft DMA engine or a fifo interface. For GigE-based Zynq systems, there is a built-in DMA
and so no extra configuration is needed. Same applies to axi_ethernetlite based systems,
which have their built-in buffer management provisions.

Figure 1 shows a sample system architecture with a Kintex®-6 device utilizing the axi_ethernet
core with DMA.
X-Ref Target - Figure 1

Figure 1: System Architecture using axi_ethernet core with DMA
UG650 June 4, 2014 www.xilinx.com 2

http://www.xilinx.com
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums

Setting up the Software System
Setting up the
Software
System

To use lwIP in a software application, you must first compile the lwIP library as part of software
application.

To move the hardware design to SDK, you must first export it from the Hardware Tools.

1. Select Project > Export Hardware Design to SDK.

2. On the Export to SDK dialog box that opens, click Export & Launch SDK.

Vivado exports the design to SDK. SDK opens and prompts you to create a workspace.

After SDK opens with hw_platform already present in the Project Explorer, compile the lwIP
library:

1. Select File > New > Xilinx Board Support Package.

The New Board Support Package window opens.

2. Give the project a name and select a location for it. Select XilKernel, Standalone, or
FreeRTOS, and click Finish.

Note: For Zynq there is no option for XilKernel. FreeRTOS must be used for Zynq. The FreeRTOS
BSP for Zynq is available for download from:
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums

Follow the steps provided in the pdf document provided with the port to use the FreeRTOS
BSP.

The Board Support Package Settings window opens.

3. Select the lwip140 library with version 2.1.

On the left side of the SDK window, lwip140 appears in the list of libraries to be compiled.

4. Select lwip140 in the Project Explorer tab. The configuration options for lwIP are listed.
Configure the lwIP and click OK.

The board support package automatically builds with lwIP included in it.

Configuring lwIP Options

The lwIP provides configurable parameters. The values for these parameters can be changed
in SDK. There are two major categories of configurable options:

• Xilinx Adapter to lwIP options: These control the settings used by Xilinx adapters for the
ethernet cores.

• Base lwIP options: These options are part of lwIP library itself, and include parameters for
TCP, UDP, IP and other protocols supported by lwIP.

The following sections describe the available lwIP configurable options.
UG650 June 4, 2014 www.xilinx.com 3

http://www.xilinx.com
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums

Setting up the Software System
Customizing lwIP API Mode

The 140_v2_00_a supports both raw API and socket API:

• The raw API is customized for high performance and lower memory overhead. The
limitation of raw API is that it is callback-based, and consequently does not provide
portability to other TCP stacks.

• The socket API provides a BSD socket-style interface and is very portable; however, this
mode is not as efficient as raw API mode in performance and memory requirements.

The 140_v2_00_aalso provides the ability to set the priority on TCP/IP and other lwIP
application threads. Table 1 provides lwIP library API modes.

Table 1: API Mode Options and Descriptions

Attribute/Options Description Type Default

api_mode
{RAW_API | SOCKET_API}

The lwIP library mode of operation. enum RAW_API

socket_mode_thread_prio Priority of lwIP TCP/IP thread and
all lwIP application threads.
This setting applies only when
Xilkernel is used in priority mode.
It is recommended that all threads
using lwIP run at the same priority
level.

Note: For GigE based Zynq-7000
systems using FreeRTOS,
appropriate priority should be set.
The default priority of 1 will not give
the expected behavior.

For FreeRTOS (Zynq-700
systems), all internal lwIP tasks
(except the main TCP/IP task) are
created with the priority level set
for this attribute. The TCP/IP task
is given a higher priority than other
tasks for improved performance.
The typical TCP/IP task priority is 1
more than the priority set for this
attribute for FreeRTOS.

integer 1

use_axieth_on_zynq In the event that the AxiEthernet
soft IP is used on a Zynq-7000
device.
This option ensures that the GigE
on the Zynq-7000 PS (EmacPs) is
not enabled and the device uses
the AxiEthernet soft IP for Ethernet
traffic.

Note: The existing Xilinx-provided
lwIP adapters are not tested for
multiple MACs.

integer 0 = Use Zynq-7000
PS-based GigE
controller
1= User
AxiEthernet.
UG650 June 4, 2014 www.xilinx.com 4

http://www.xilinx.com

Setting up the Software System
Configuring Xilinx Adapter Options

The Xilinx adapters for EMAC/GigE cores are configurable.

Ethernetlite Adapter Options

Table 2 provides the configuration parameters for the axi_ethernetlite adapter.

TEMAC Adapter Options

Table 3 provides the configuration parameters for the axi_ethernet and GigE adapters.

Table 2: xps_ethernetlite Adapter Options

Attribute Description Type Default

sw_rx_fifo_size Software Buffer Size in bytes of the
receive data between EMAC and
processor

integer 8192

sw_tx_fifo_size Software Buffer Size in bytes of the
transmit data between processor and
EMAC

integer 8192

Table 3: axi_Ethernet/GigE Adapter

Attribute Default Type Description

n_tx_descriptors 64 integer Number of Tx descriptors to be used. For high performance
systems there might be a need to use a higher value for this.

n_rx_descriptors 64 integer Number of Rx descriptors to be used. For high performance
systems there might be a need to use a higher value for this.
Typical values are 128 and 256.

n_tx_coalesce 1 integer Setting for Tx interrupt coalescing1

n_rx_coalesce 1 integer Setting for Rx interrupt coalescing1

tcp_rx_checksum_offload false boolean Offload TCP Receive checksum calculation (hardware support
required). For GigE in Zynq, the TCP receive checksum
offloading is always present, so this attribute does not apply.

tcp_tx_checksum_offload false boolean Offload TCP Transmit checksum calculation (hardware support
required). For GigE cores (for Zynq) the TCP transmit
checksum offloading is always present, so this attribute does
not apply.

tcp_ip_rx_checksum_ofload false boolean Offload TCP and IP Receive checksum calculation (hardware
support required).
Applicable only for AXI systems. For GigE in Zynq the TCP and
IP receive checksum offloading is always present, so this
attribute does not apply.

tcp_ip_tx_checksum_ofload false boolean Offload TCP and IP Transmit checksum calculation (hardware
support required).
Applicable only for AXI systems. For GigE in Zynq the TCP and
IP transmit checksum offloading is always present, so this
attribute does not apply.
UG650 June 4, 2014 www.xilinx.com 5

http://www.xilinx.com

Setting up the Software System
Configuring Memory Options

The lwIP stack provides different kinds of memories. Similarly, when the application uses
socket mode, different memory options are used. All the configurable memory options are
provided as a separate category. Default values work well unless application tuning is required.

The memory parameter options are provided in Table 4:

Note: Because Sockets Mode support uses Xilkernel services, the number of semaphores chosen in the
Xilkernel configuration must take the value set for the memp_num_netbuf parameter into account. For
FreeRTOS BSP there is no setting for the maximum number of semaphores. For FreeRTOS, you can
create semaphores as long as memory is available.

phy_link_speed enum CONFIG_
LINKSPEE
D_
AUTODETE
CT

Link speed as auto-negotiated by the PHY. lwIP configures the
TEMAC/GigE for this speed setting. This setting must be
correct for the TEMAC/GigE to transmit or receive packets.

Note: The CONFIG_LINKSPEED_
AUTODETECT setting attempts to detect the correct linkspeed by
reading the PHY registers; however, this is PHY dependent, and
has been tested with the Marvell PHYs present on Xilinx
development boards. For other PHYs, select the correct speed.

temac_use_jumbo_
frames_experimental

false boolean Use TEMAC jumbo frames (with a size up to 9k bytes). If this
option is selected, jumbo frames are allowed to be transmitted
and received by the TEMAC.
For GigE in Zynq there is no support for jumbo frames, so this
attribute does not apply.

1. This setting is not applicable for GigE in Zynq.

Table 3: axi_Ethernet/GigE Adapter (Cont’d)

Table 4: Memory Parameter Options

Attribute Default Type Description

mem_size 131072 Integer Total size of the heap memory available, measured in bytes. For
applications which use a lot of memory from heap (using C library
malloc or lwIP routine mem_malloc or pbuf_alloc with PBUF_RAM
option), this number should be made higher as per the requirements.

memp_n_pbuf 16 Integer The number of memp struct pbufs. If the application sends a lot of
data out of ROM (or other static memory), this should be set high.

memp_n_udp_pcb 4 Integer The number of UDP protocol control blocks. One per active UDP
connection.

memp_n_tcp_pcb 32 Integer The number of simultaneously active TCP connections.

memp_n_tcp_pcb_
listen

8 Integer The number of listening TC connections.

memp_n_tcp_seg 256 Integer The number of simultaneously queued TCP segments.

memp_n_sys_timeout 8 Integer Number of simultaneously active timeouts.

memp_num_netbuf 8 Integer Number of allowed structure instances of type netbufs. Applicable
only in socket mode.

memp_num_netconn 16 Integer Number of allowed structure instances of type netconns. Applicable
only in socket mode.

memp_num_api_msg 16 Integer Number of allowed structure instances of type api_msg. Applicable
only in socket mode.

memp_num_tcpip_msg 64 Integer Number of TCPIP msg structures (socket mode only).
UG650 June 4, 2014 www.xilinx.com 6

http://www.xilinx.com

Setting up the Software System
Configuring Packet Buffer (Pbuf) Memory Options

Packet buffers (Pbufs) carry packets across various layers of the TCP/IP stack. The following
are the pbuf memory options provided by the lwIP stack. Default values work well unless
application tuning is required.

Table 5 provides the parameters for the Pbuf memory options:

Configuring ARP Options

Table 6 provides the parameters for the ARP options. Default values work well unless
application tuning is required.

Configuring IP Options

Table 7 provides the IP parameter options. Default values work well unless application tuning is
required.

Table 5: Pbuf Memory Options Configuration Parameters

Attribute Default Type Description

pbuf_pool_size 256 Integer Number of buffers in pbuf pool. For high
performance systems, you might consider
increasing the pbuf pool size to a higher value,
such as 512.

pbuf_pool_bufsize 1700 Integer Size of each pbuf in pbuf pool. For systems that
support jumbo frames, you might consider using
a pbuf pool buffer size that is more than the
maximum jumbo frame size.

pbuf_link_hlen 16 Integer Number of bytes that should be allocated for a
link level header.

Table 6: ARP Options Configuration Parameters

Attribute Default Type Description

arp_table_size 10 Integer Number of active hardware address IP address
pairs cached.

arp_queueing 1 Integer If enabled outgoing packets are queued during
hardware address resolution. This attribute can
have two values: 0 or 1.

Table 7: IP Configuration Parameter Options

Attribute Default Type Description

ip_forward 0 Integer Set to 1 for enabling ability to forward IP packets
across network interfaces. If running lwIP on a
single network interface, set to 0. This attribute
can have two values: 0 or 1.

ip_options 0 Integer When set to 1, IP options are allowed (but not
parsed). When set to 0, all packets with IP
options are dropped. This attribute can have two
values: 0 or 1.

ip_reassembly 1 Integer Reassemble incoming fragmented IP packets.

ip_frag 1 Integer Fragment outgoing IP packets if their size
exceeds MTU.

ip_reass_max_pbufs 128 Integer Reassembly pbuf queue length.
UG650 June 4, 2014 www.xilinx.com 7

http://www.xilinx.com

Setting up the Software System
Configuring ICMP Options

Table 8 provides the parameter for ICMP protocol option. Default values work well unless
application tuning is required.

Configuring IGMP Options

The IGMP protocol is supported by lwIP stack. When set true, the following option enables the
IGMP protocol.

Configuring UDP Options

Table 10 provides UDP protocol options. Default values work well unless application tuning is
required.

Configuring TCP Options

Table 11 provides the TCP protocol options. Default values work well unless application tuning
is required.

ip_frag_max_mtu 1500 Integer Assumed max MTU on any interface for IP
fragmented buffer.

ip_default_ttl 255 Integer Global default TTL used by transport layers.

Table 8: ICMP Configuration Parameter Option

Attribute Default Type Description

icmp_ttl 255 Integer ICMP TTL value.
For GigE cores (for Zynq) there is no support for
ICMP in the hardware.

Table 9: IGMP Configuration Parameter Option

Attribute Default Type Description

imgp_options false Boolean Specify whether IGMP is required.

Table 10: UDP Configuration Parameter Options

Attribute Default Type Description

lwip_udp true Boolean Specify whether UDP is required.

udp_ttl 255 Integer UDP TTL value.

Table 11: TCP Options Configuration Parameters

Attribute Default Type Description

lwip_tcp true Boolean Require TCP.

tcp_ttl 255 Integer TCP TTL value.

tcp_wnd 2048 Integer TCP Window size in bytes.

tcp_maxrtx 12 Integer TCP Maximum retransmission value.

tcp_synmaxrtx 4 Integer TCP Maximum SYN retransmission
value.

Table 7: IP Configuration Parameter Options (Cont’d)

Attribute Default Type Description
UG650 June 4, 2014 www.xilinx.com 8

http://www.xilinx.com

Setting up the Software System
Configuring DHCP Options

The DHCP protocol is supported by lwIP stack. Table 12 provides DHCP protocol options.
Default values work well unless application tuning is required.

Configuring the Stats Option

lwIP stack has been written to collect statistics, such as the number of connections used;
amount of memory used; and number of semaphores used, for the application. The library
provides the stats_display() API to dump out the statistics relevant to the context in which
the call is used. The stats option can be turned on to enable the statistics information to be
collected and displayed when the stats_display API is called from user code. Use the
following option to enable collecting the stats information for the application.

Configuring the Debug Option

lwIP provides debug information. Table 14 lists all available options.

tcp_queue_ooseq 1 Integer Accept TCP queue segments out of
order. Set to 0 if your device is low on
memory.

tcp_mss 1460 Integer TCP Maximum segment size.

tcp_snd_buf 8192 Integer TCP sender buffer space in bytes.

Table 12: DHCP Options Configuration Parameters

Attribute Default Type Description

lwip_dhcp false Boolean Specify whether DHCP is required.

dhcp_does_arp_check false Boolean Specify whether ARP checks on offered
addresses.

Table 13: Statistics Option Configuration Parameters

Attribute Description Type Default

lwip_stats Turn on lwIP Statistics int 0

Table 14: Debug Option Configuration Parameters

Attribute Default Type Description

lwip_debug false Boolean Turn on/off lwIP debugging.

ip_debug false Boolean Turn on/off IP layer debugging.

tcp_debug false Boolean Turn on/off TCP layer debugging.

udp_debug false Boolean Turn on/off UDP layer debugging.

icmp_debug false Boolean Turn on/off ICMP protocol debugging.

igmp_debug false Boolean Turn on/off IGMP protocol debugging.

netif_debug false Boolean Turn on/off network interface layer
debugging.

sys_debug false Boolean Turn on/off sys arch layer debugging.

pbuf_debug false Boolean Turn on/off pbuf layer debugging

Table 11: TCP Options Configuration Parameters (Cont’d)

Attribute Default Type Description
UG650 June 4, 2014 www.xilinx.com 9

http://www.xilinx.com

Setting up the Software System
Software APIs

The lwIP library provides two different APIs: RAW mode and Socket mode.

Raw API

The Raw API is callback based. Applications obtain access directly into the TCP stack and
vice-versa. As a result, there is no extra socket layer, and using the Raw API provides excellent
performance at the price of compatibility with other TCP stacks.

Xilinx Adapter Requirements when using RAW API

In addition to the lwIP RAW API, the Xilinx adapters provide the xemacif_input utility
function for receiving packets. This function must be called at frequent intervals to move the
received packets from the interrupt handlers to the lwIP stack. Depending on the type of packet
received, lwIP then calls registered application callbacks.

Raw API File

The $XILINX_SDK/sw/ThirdParty/sw_services/140_v2_00_a/src/lwip-
1.4.0/doc/rawapi.txt file describes the lwIP Raw API.

Socket API

The lwIP socket API provides a BSD socket-style API to programs. This API provides an
execution model that is a blocking, open-read-write-close paradigm.

Xilinx Adapter Requirements when using Socket API

Applications using the Socket API with Xilinx adapters need to spawn a separate thread called
xemacif_input_thread. This thread takes care of moving received packets from the
interrupt handlers to the tcpip_thread of the lwIP. Application threads that use lwIP must be
created using the lwIP sys_thread_new API. Internally, this function makes use of the
appropriate thread or task creation routines provided by XilKernel or FreeRTOS.

Xilkernel/FreeRTOS scheduling policy when using Socket API

lwIP in socket mode requires the use of the Xilkernel or FreeRTOS, which provides two policies
for thread scheduling: round-robin and priority based:

There are no special requirements when round-robin scheduling policy is used because all
threads or tasks with same priority receive the same time quanta. This quanta is fixed by the
RTOS (Xilkernel or FreeRTOS) being used.

With priority scheduling, care must be taken to ensure that lwIP threads or tasks are not
starved. For Xilkernel, lwIP internally launches all threads at the priority level specified in
socket_mode_thread_prio. For FreeRTOS, lwIP internally launches all tasks except the
main TCP/IP task at the priority specified in socket_mode_thread_prio. The TCP/IP task
in FreeRTOS is launched with a higher priority (one more than priority set in
socket_mode_thread_prio). In addition, application threads must launch
xemacif_input_thread. The priorities of both xemacif_input_thread, and the lwIP
internal threads (socket_mode_thread_prio) must be high enough in relation to the other
application threads so that they are not starved.
UG650 June 4, 2014 www.xilinx.com 10

http://www.xilinx.com

Setting up the Software System
Using Xilinx Adapter Helper Functions

The Xilinx adapters provide the following helper functions to simplify the use of the lwIP APIs.

void lwip_init()

This function provides a single initialization function for the lwIP data structures. This replaces
specific calls to initialize stats, system, memory, pbufs, ARP, IP, UDP, and TCP layers.

struct netif *xemac_add (struct netif *netif, struct
ip_addr *ipaddr, struct ip_addr *netmask, struct
ip_addr *gw, unsigned char *mac_ethernet_address
unsigned mac_baseaddr)

The xemac_add function provides a unified interface to add any Xilinx EMAC IP as well as
GigE core. This function is a wrapper around the lwIP netif_add function that initializes the
network interface ‘netif’ given its IP address ipaddr, netmask, the IP address of the
gateway, gw, the 6 byte ethernet address mac_ethernet_address, and the base address,
mac_baseaddr, of the axi_ethernetlite or axi_ethernet MAC core.

void xemacif_input(struct netif *netif)

(RAW mode only)

The Xilinx lwIP adapters work in interrupt mode. The receive interrupt handlers move the
packet data from the EMAC/GigE and store them in a queue. The xemacif_input function
takes those packets from the queue, and passes them to lwIP; consequently, this function is
required for lwIP operation in RAW mode. The following is a sample lwIP application in RAW
mode.

while (1) {
 /* receive packets */
 xemacif_input(netif);

 /* do application specific processing */
 }

The program is notified of the received data through callbacks.

void xemacif_input_thread(struct netif *netif)

(Socket mode only)

In the socket mode, the application thread must launch a separate thread to receive the input
packets. This performs the same work as the RAW mode function, xemacif_input, except
that it resides in its own separate thread; consequently, any lwIP socket mode application is
required to have code similar to the following in its main thread:

sys_thread_new(“xemacif_input_thread”,
xemacif_input_thread, netif, THREAD_STACK_SIZE, DEFAULT_THREAD_PRIO);

The application can then continue launching separate threads for doing application specific
tasks. The xemacif_input_thread receives data processed by the interrupt handlers, and
passes them to the lwIP tcpip_thread.
UG650 June 4, 2014 www.xilinx.com 11

http://www.xilinx.com

lwIP Performance
void xemacpsif_resetrx_on_no_rxdata(struct netif *netif)

(Used in both Raw and Socket mode and applicable only for the Zynq-7000 processor and
GigE controller)

There is an errata on the GigE controller that is related to the Rx path. The errata describes
conditions whereby the Rx path of GigE becomes completely unresponsive with heavy Rx
traffic of small sized packets. The condition occurrence is rare; however a software reset of the
Rx logic in the controller is required when such a condition occurs.

This API must be called periodically (approximately every 100 milliseconds using a timer or
thread) from user applications to ensure that the Rx path never becomes unresponsive for
more than 100 milliseconds.

lwIP
Performance

Table 15 provides the maximum TCP throughput achievable by FPGA, CPU, EMAC, and
system frequency in RAW modes. Applications requiring high performance should use the
RAW API.

API Examples Sample applications using the RAW API and Socket API are available on the Xilinx website.
This section provides pseudo code that illustrates the typical code structure.

RAW API

Applications using the RAW API are single threaded, and have the following broad structure:

int main()
{

struct netif *netif, server_netif;
struct ip_addr ipaddr, netmask, gw;

/* the MAC address of the board.
* This should be unique per board/PHY */
unsigned char mac_ethernet_address[] =

{0x00, 0x0a, 0x35, 0x00, 0x01, 0x02};

lwip_init();

/* Add network interface to the netif_list,
 * and set it as default */
if (!xemac_add(netif, &ipaddr, &netmask,

&gw, mac_ethernet_address,
EMAC_BASEADDR)) {
printf(“Error adding N/W interface\n\r”);
return -1;

 }
netif_set_default(netif);

/* now enable interrupts */

Table 15: Library Performance

FPGA CPU EMAC System
Frequency

Max TCP Throughput
in RAW Mode

Rx Side Tx Side

Virtex® MicroBlaze axi-ethernet 100 MHz 182 Mbps 100 Mbps

Virtex MicroBlaze xps-ll-temac 100 MHz 178 Mbps 100 Mbps

Virtex MicroBlaze xps-ethernetlite 100 MHz 50 Mbps 38 Mbps
UG650 June 4, 2014 www.xilinx.com 12

http://www.xilinx.com

API Examples
platform_enable_interrupts();

/* specify that the network if is up */
netif_set_up(netif);

/* start the application, setup callbacks */
start_application();

/* receive and process packets */
while (1) {

xemacif_input(netif);
/* application specific functionality */
transfer_data();

 }
}

RAW API works primarily using asynchronously called Send and Receive callbacks.

Socket API

XilKernel-based applications in socket mode can specify a static list of threads that Xilkernel
spawns on startup in the Xilkernel Software Platform Settings dialog box. Assuming that
main_thread() is a thread specified to be launched by XIlkernel, control reaches this first
thread from application "main" after the Xilkernel schedule is started. In main_thread, one
more thread (network_thread) is created to initialize the MAC layer.

For FreeRTOS (Zynq-7000 processor systems) based applications, once the control reaches
application "main" routine, a task (can be termed as main_thread) with an entry point function
as main_thread() is created before starting the scheduler. After the FreeRTOS scheduler
starts, the control reaches main_thread(), where the lwIP internal initialization happens.
The application then creates one more thread (network_thread) to initialize the MAC layer.

The following pseudo-code illustrates a typical socket mode program structure.

void network_thread(void *p)
{

struct netif *netif;
struct ip_addr ipaddr, netmask, gw;

/* the MAC address of the board.
 * This should be unique per board/PHY */
unsigned char mac_ethernet_address[] =

{0x00, 0x0a, 0x35, 0x00, 0x01, 0x02};

netif = &server_netif;

/* initialize IP addresses to be used */
IP4_ADDR(&ipaddr,192,168,1,10);
IP4_ADDR(&netmask,255,255,255,0);
IP4_ADDR(&gw,192,168,1,1);

/* Add network interface to the netif_list,
 * and set it as default */
if (!xemac_add(netif, &ipaddr, &netmask,

&gw, mac_ethernet_address,
EMAC_BASEADDR)) {

printf(“Error adding N/W interface\n\r”);
return;

 }
netif_set_default(netif);

/* specify that the network if is up */
UG650 June 4, 2014 www.xilinx.com 13

http://www.xilinx.com

API Examples
netif_set_up(netif);

/* start packet receive thread
 - required for lwIP operation */
sys_thread_new(“xemacif_input_thread”, xemacif_input_thread,

netif,
THREAD_STACKSIZE, DEFAULT_THREAD_PRIO);

/* now we can start application threads */
/* start webserver thread (e.g.) */
sys_thread_new(“httpd” web_application_thread, 0,

THREAD_STACKSIZE DEFAULT_THREAD_PRIO);
}

int main_thread()
{

/* initialize lwIP before calling sys_thread_new */
lwip_init();

/* any thread using lwIP should be created using
 * sys_thread_new() */
sys_thread_new(“network_thread” network_thread, NULL,

THREAD_STACKSIZE DEFAULT_THREAD_PRIO);

 return 0;
}

UG650 June 4, 2014 www.xilinx.com 14

http://www.xilinx.com

	lwIP 1.4.0 Library (v2.1)
	Overview
	Features
	Additional Resources
	Using lwIP
	Setting up the Hardware System
	Setting up the Software System
	lwIP Performance
	API Examples

