Iy
y

\
llllm

¥ CYPRESS

PERFORM

PSoC® Board Support Package for
CY8CKIT-042 (PSoC 4 Pioneer Kit)

CapSense- and IDAC-enabled Configurations

v1.0

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intl): 408.943.2600

http://www.cypress.com

November 2013 YFS

BSP for CY8CKIT-042 v1.0

Copyrights

Copyright © 2013 Cypress Semiconductor Corporation. All rights reserved. Any design information or characteristics
specifically provided by our customer or other third party inputs contained in this document are not intended to be
claimed under Cypress’s copyright.

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Designer is a
trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein
are the property of their respective owners.

Purchase of 12C components from Cypress or one of its sublicensed Associated Companies conveys a license under
the Philips 12C Patent Rights to use these components in an 12C system, provided that the system conforms to the
I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade
name, NXP Semiconductors.

The information in this document is subject to change without notice and should not be construed as a commitment
by Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that
may appear in this document. No part of this document may be copied, or reproduced for commercial use, in any
form or by any means without the prior written consent of Cypress.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials
described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit
described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of
Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and
in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress believes
that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how
they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of
these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other
semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are
guaranteeing the product as “unbreakable.”

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is
constantly evolving. We at Cypress are committed to continuously improving the code protection features of our
products.

2 of 52 November 2013

v1.0 BSP for CY8CKIT-042

Table of Contents

Chapters

TABLE OF CONTENTS ..ottt ettt e et e e et e e e e et s e e e et e e e eaaa e e e eataaeaeees 3
(O g =T o] (T £ P PP P TP PP PPPPP 3
JLIE= 1 0] TP RRPTPRR 4
[0 U= PO PO TT PP PPPPPOPI 5
SUPPORTED DESIGN CONFIGURATIONSottt e e e et seana e e e 7
DEVICE FAMILY OVERVIEW ...t e e e e et e e et e et e e e e eaas 7
RESOURCES ... et e et e e e et e e e e et e e e e e et e e e e et s e e e etaneeeeeeans 9
SYSTEM SETTINGS ...t e e e et e e et e e e e et s e e e et e e e eraaaes 10
1070] 1110 U] £= 11 o] o I TP PO PP PP PP PPPPP 10
[7Y o] T S 10
@11 =11 lo I @Xo] o To 111 o] o - S T TP PP P PP PPPPP 10
e N YT 11
DEVICE PIN FUNCLIONS ...oeiiiiiiiiiiiieee ettt e e e e e st e et e e e s s as st ee e e e eeeesaanesbaeeeeaeeesaanssbaneeeaeeeannnsenenes 13
USING the CY_PINS COMPONENTuuuutiiuiiiiieiitititerererereree e e eee e rerersrsrsearssssssssssesssssnsssnsnsnsnsnsnsssnsnnns 15
L8 L L 04 TP 17
SYSEEIM ClOCKS ..o ———— 17
[Yo=K 4 o o] PP 18
(0 L[To IR g =T 03 A i [0 Lo Q@ .41 0T 1= o | S 19
IN T E R RU P T S L e e e et e e et e e et e e et e e et e e et e e et e e et e eanneeetnaenennns 20
(C1(o] o T 1M [a1 (=T (V] o] o] o1 o] H OO PP PP T PUPTPTPPPTPTN 20
USING the CY_ISI COMPONENTeiiiiiiiiiiiiiii ettt e s bt e e e aa bt et e s e bt e e s aabbe e e s abb e e e e anbeeeeenees 21
o IS AV 1Y 1@ T 23
DESIGN CON T EN T S e e e e et e et e e et e e et e e et e e et e e et eeeennns 24
167 o LT PPTTPOTPP 24
2 SO 28
P UV IMIS L.ttt e+ e oo e ettt oo oo oo ah bttt e et e e e e e R hbe e et et e e e o e babe e et e e e et e e babneeeeaeeeaanrnrnees 31
[0 1= o Lo 10] Tod =0 IR Y o o S 35
THMIBE e 37
Y 5 U 39
1O70] 10 o= 1= 1 (0] TP OO PP PP PPPRPPRPPPPRN 43
1 TP UP PR ORI 45
LOFT 0 15T =] 0 LT P PP PP PO PPRPPPPPPPR 46
SOFIWEANE PINS ittt e e oottt et e e e e s o a b et ettt e e e e e o a e bbb et e e e e e s e e nnbbbeeeeaeeaeannbenneeaaaeeeaann 48
OTHER RESOURCESot e e e e e e et e e e e e et e aeaaeees 51
REVISION HISTORY ..ttt e e e e e e e et e e e e et e e e e e et r e et e e et e enannas 52

November 2013 3 of 52

BSP for CY8CKIT-042 v1.0
Tables

Table 1: DeVICe CharaCleriStCS.c.uuiiiiiiiii it e e e e e e e e 8
Table 2: DEVICE RESOUITESccooiiiee e 9
Table 3: Configuration SELHNGScooiiiiieeee e 10
Table 4: DEDUQY SEIINGS. . uuuuiii i e e e e e e e e e e e ettt e e e e eeeeeaatbaaaaeeaeeeeannes 10
Table 5: Operating CONAItIONS.........cooiii i 10
TaADIE B: DEVICE PINS ...ttt e e e e et e e e e e 13
Table 7: CY_PINS APIS ... 15
Table 8: SYStemM CIOCKScooieieeeeeee e 17
TabIe 9: LOCAI CIOCKS ...ttt e e e e e e e et e e s 18
TabIe 10: CY_ClOCK APIS ... et e et e s e e e e e e et ettt e s e e e eaeeeaastsnaaaeeaaeeennnes 19
BIF=T o] [T N e 1 1 (= (o (USSP 20
TaADIE 12: CY IST APIS .. e e e et e e e e e e e e aaaeaaarae 21
Table 13: Flash ProteCtion SettiNgS........ccooiiiiiiiiiieeeeeeeeee e 23
Table 14: UART PaAramMeLerS......ccooiiiiiiiiiiiiie ettt ettt e e e e e e e e s 24
Table 15: UART INTEITUPE SOUICESccoeeieeeeeee e 25
Table 16: UART APIS ... 26
Table 17: UART INTEITUPL APIS.. ..ottt e e et e e e e e e e e e e ettt s e e e e e e eeenne 27
Table 18: UART Nt PArameterSccocviiieiiiii ettt e e et e e e e et e e e e ara e aaees 28
Table 19: 12C PAIAMELEISeiiiiiiiiiiiiie ettt et e e e e e e e e e e e e e e r e e e e s 28
BIF= Lo (T2 O 2 O N LSRR 29
Table 21: 12C INTEITUPL APIS ... 30
TabIle 22: PWM APIS ... 33
Table 23: PWM INTEITUPE SOUICEScoeeieeeeeeee e 34
Table 24: PWM_CIOCK ParameEtersScii i i ittt s s e e e e et e e e e e e e e e eenees 34
Table 25: RED_LED and PWM_N_OUt ParametersSoouuuuiiiiieeeeiiiiiiiias e e eeeeeeeiiinnn e e eaeeeennnes 34
Table 26: PWM_N_INt PArameEtersSii ittt e et e e et e e e e et e e e e ara e aaees 35
Table 27: DEDOUNCEr PAramMeterscoooiiiiiiieeeeee s 36
Table 28: Debounce_CloCK ParametersS...........cuuuuuiiiiieeeiieiiiieis e e e eetea s e e e e e e e eaata e e e e aaeeaannes 36
Table 29: SW2 ParameterScoooii oo 36
Table 30: SW2_Active_INt PArametersciiiiiiiii et e et e e e s e et e e e aaa e eeees 36

4 of 52

November 2013

v1.0

BSP for CY8CKIT-042

Table 31: SW2_Wakeup [Nt ParametersSouuuiiiiieeiiieiiiiis s e ee ettt s e e e e e e e eeana e e e e e aeeaeanne 36
Table 32: TImer_ClOCK ParameterS.o et e ettt s e e e e e e e eeaateaa e e e e aeeeeenne 38
Table 33: TIMer_Pin ParameEtersuuucii i e et s s e e e e e e e e et s e s e e aaeaeanne 38
Table 34: TIMEr_INt PArameEterS........uuuii i e e e s e e e e e e e ettt e e s e eaaeeeanne 38
Table 35: TIMEI APIS ... 38
Table 36: ADC PAraMELEISoiiiiiiiiiiiii ettt a e e e e e e r et e e e e e s ree e e s 40
TADIE B7: ADC APIS ...ttt et e ettt e e et et — e e e aa e e e ettt e e aaaeeeanaes 41
Table 38: OPamMP ParameterSccooo oo 42
Table 39: OPaAMP APIS ...t e e e e e e e e e aaaaaaarnn 42
Table 40: ADCO, ADC1, ADC2P and ADC2Z2M ParameterS........ooeuuiiuniiiniiiiiiiieeiieei e e eaeeanes 43
Table 41: ADC_EOC _INt PAr@mMeEtEIS. ... c.ccceiieeeiiiiiiee e e ee ettt ee s e e e e e e e e et a s e e e e e e e eaattaaa e s e e aeeeeannes 43
Table 42: LPCOMP ParameterS.......cooo oo 44
Table 43: LPCOMP APIS ... 44
Table 44: GlobalSignal Parameters.......cciocciiiiiiiiicie e e e e e et e e e e e e e eeennes 45
Table 45: LPComp_Active_INt Parametersuoiii it e e e e e e e e eenee 45
Table 46: LPComp_Wakeup_INt Parametersccoiiiieiiiiiiiiiee et e e e e e eanees 45
Table 47: IDAC PArAMELEISooiiiiiiiiiiii ittt a e e e e e e e e e e e e e e e s reeeeeas 45
TADIE 48: IDAC APIS ...ttt e e e e et e e e et et aeeaateeaar i aaaaaaeerannes 46
Table 49: IDAC _OUL PArameLersSuuuuiiiii e ee e e e e e e e e e e e et s e e e e e e e e aaataaaeeeeaeaeeennes 46
Table 50: CapSense Parametersccoooo i a7
Table 51: CAPSENSE APIS ... et a e e e e aaaaaarae 47
Table 52: J2_**, J3_** and J4_** PArameterscccooeiiiiiiiiiiiee et e e e e e eannes 50
Figures

Figure 1: CY8C42 Device Family BIOCK DIiagramccoviviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 8
Figure 2: Device Pin Layout - CapSense-enabled............ccooooiiiiiiiiiii e, 11
Figure 3: Device Pin Layout - IDAC-eNabIed............ccoeviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 12
Figure 4: Device Pins continued (CapSense-enabled)ccvvvviiiiiiiiiiiiiiiiiiiiiie 14
Figure 5: Device Pins continued (IDAC-enabled) ... 14
Figure 6: System CIOCK CONFIQUIALIONcovviiiiiiiiiiiiiiiiiiiiiieeieeeee ettt 17
Figure 7: Local CloCk CONfIQUIAtiONccoeiiiiiiii e e e e e e eeeeennes 18
Figure 8: UART SCNEMALICcccvviiiiiiii et e et e e et e e e e et e e e e et e e e eaa e e e eeenns 24

November 2013 5 of 52

BSP for CY8CKIT-042 v1.0

FIgUre 9: 12C SCREMIALIC.cciieeeieice e s e e e e e e e e e e e e e aaanea s 28
Figure 10: PWM SCNEMEALIC.cevvviiiiiiiiiiiiiiiiiieeeiee ettt ettt ettt et et e e e e e e e e e e e e e eeeeees 32
Figure 11: Debounced SWitch SChemMaALtiC..........ccoooeiiiiiiiiii e 35
Figure 12: Timer Control Register SChemMatiC.............ccuuuuiiiiii e 37
Figure 13: TIMEr SCREMALICcvvvviiiiiiiiiiiiiiieiie ittt e e 37
Figure 14: ADC SChEMALIC........cuuiiiiii i e e s e e e e e e e e et e e e e e e e e eaneaas 40
Figure 15: ComMpParator SCNEMEALIC.vvviiiiiiiiiiiiiiiiiiee ettt e e 43
Figure 16: IDAC SCREMALIC.........civiiiiiiiiiiiiiiiiie ittt 45
Figure 17: Software Pin Schematic - CapSense-enabled.............cccccceiiiiiiiiiiiiiiiii e, 49
Figure 18: Software Pin Schematic — IDAC-enabled ... 50

6 of 52 November 2013

v1.0 BSP for CY8CKIT-042

Supported Design Configurations

This document supports two similar configurations of the PSoC 4 device. Both designs include a
core set of functions such as PWMs, a Timer, Analog Comparator and ADC. The difference is
restricted to the availability of CapSense or the current DAC (IDAC).

The selection of the CapSense- or IDAC-enabled design impacts the device resources used
and the pin choices. These differences are clearly highlighted within the document.

Device Family Overview

The Cypress PSoC 4 is a family of 32-bit devices with the following characteristics.

e High-performance 32-bit ARM Cortex-MO core with a nested vectored interrupt controller
(NVIC)

¢ Digital system that includes configurable Universal Digital Blocks (UDBs) and specific
function peripherals, such as UART, SPI and 12C

¢ Analog subsystem that includes 12-bit SAR ADC, PWMs, comparators, op amps,
CapSense, LCD drive and more

e Several types of memory elements, including SRAM and flash
e Programming and debug system through Serial Wire Debug (SWD)
¢ Flexible routing to all pins

Figure 1 shows the major components of a typical CY8C42 family member PSoC 4 device.

November 2013 7 of 52

http://www.cypress.com/go/cy8c42datasheet

BSP for CY8CKIT-042

Figure 1: CY8C42 Device Family Block Diagram

v1.0

{CPU & Memory
PSOC4A P ——
SWD/TC SPCIF,
‘ Cortex
32-bit § MO FLASH SRAM SROM
i 32 kB 4 kB 4 kB
@ : 48 MHz
AHBL e Nf/?(:sTIIQA(;JhLI-X Read Accelerator SRAM Controller ROM Controller
System Resources | iI iI il iI
—seocoemr] | | System Interconnect (Single Layer AHB)
PORW'CLVD Peripherals 11
REF | BOD L
PWRSYS A B Peripheral Interconnect (MMIO)
NVLatches b _ S _ S _ S i _ i
N | B I B 10 I 10 1 B ¥
Clock 1 1] 1 [] =1]
e Programmable 5 Progrgrqmable =
WDT Analog = Digital <
IMO | _ILO &) = =
af |2 M %)
x1 El|lal |A UDB UDB | |a o
o @ 9 Of |O I o
Reset O © o= m| [
SAR . = < s ol |9
(12-bit) < 2l s
N (>\l< o™
ubDB UDB
Test
DFT Logic
D ETANAI) | Port Interface & Digital System Interconnect (DSI) |
4) 4 L A ,'I__
: y y y \ 4
Active/Sleep | : X CTBm | High Speed 1/0 Matrix]
77[3;;2%:;94 - [= | 2x OpAmp |X1 y y i 8 ¢
1/0 Pins (Analog, Digital, Special, ESD) |
\Programmable /O ...

Table 1 lists the key characteristics of this device.

Table 1: Device Characteristics

Name Value

Device CY8C4245AXI1-483
Architecture PSoC 4

Family CY8C42

CPU speed (MHz) 48

Flash size (kBytes) 32

SRAM size (kBytes) 4

Vdd range (V) 1.71t0 5.5

Automotive qualified

No (Industrial Grade Only)

NOTE: The CPU speed noted above is the maximum allowed speed. The CPU is clocked by
HFCLK, which is listed in the System Clocks section below (and can be changed by modifying

the project in PSoC Creator).

8 of 52 November

2013

v1.0

Resources

BSP for CY8CKIT-042

This design is intended to function like a relatively simple microcontroller, with only a little PSoC-
specific functionality (e.g. the hardware-based switch debouncer and the control register being
used to drive muxes and inputs to the Timer). As a result not all resources have been used. This
is deliberate because it leaves “head-room” for the reader to modify the design to suit their
unigue needs (using PSoC Creator).

Table 2: Device Resources

Resources Used

Name CapSense-enabled IDAC-enabled Total Available
Digital clock dividers 1 (25.0%) 1 (25.0%) 4
Pins 35 (97.2%) 34 (94.4%) 36
UDB Macrocells 7 (21.9%) 7 (21.9%) 32
UDB Unique Pterms 10 (15.6%) 10 (15.6%) 64
UDB Datapath Cells 0 (0.0%) 0 (0.0%) 4
UDB Status Cells 0 (0.0%) 0 (0.0%) 4
UDB Control Cells 1 (25.0%) 1 (25.0%) 4
Interrupts 13 (40.6%) 12 (37.5%) 32
Comparator/Opamp Fixed Blocks 1 (50.0%) 1 (50.0%) 2
SAR Fixed Blocks 1 (100.0%) 1 (100.0%) 1
CSD Fixed Blocks 1 (100.0%) 0 (0.0%) 1
8-bit CapSense IDACs 1 (100.0%) 1 (100.0%) 1
7-bit CapSense IDACs 1 (100.0%) 0 (0.0%) 1
Temperature Sensor 0 (0.0%) 0 (0.0%) 1
Low Power Comparator 1 (50.0%) 1 (50.0%) 2
TCPWM Blocks 4 (100.0%) 4 (100.0%) 4
Serial Communication Blocks 2 (100.0%) 2 (100.0%) 2
Segment LCD Blocks 0 (0.0%) 0 (0.0%) 1

November 2013

9 of 52

BSP for CY8CKIT-042

System Settings

The following tables show system settings as configured in PSoC Creator.

Configuration

Table 3: Configuration Settings

Name

Value

Device Configuration Mode

Compressed

Unused Bonded 10

Allow but warn

Heap Size (bytes) 256
Stack Size (bytes) 1024
Include CMSIS Core Peripheral Library Files True
Debug

Table 4: Debug Settings

Name Value
Chip Protection Open

Debug Select

SWD (serial wire
debug)

Operating Conditions

Table 5: Operating Conditions

Name Value
Vvddd (V) 3.3

Vdda (V) 3.3
Variable Vdda True
Temperature Range -40C - 85C

10 of 52

November 2013

v1.0 BSP for CY8CKIT-042

Pins

PSoC devices include flexible internal routing so that the user can pick the perfect pin mapping.
This diagram shows a pinout chosen to suit the Pioneer board. The user can modify the pin
selection from PSoC Creator.

Figure 2: Device Pin Layout - CapSense-enabled

T o= g
wm w w wm w
| | = = |
w w o n n
0 % & o o0
Ww = = c c c
2 BB BB BT
D0 s o oo oo oo €
pp W o @m @m o@m o@m O
59 r O 0O O O O I
=T (] i — = (53] oo e
=T = = =T =T (] (4] (o]
s o o=Imoc- o
J2 1) 2 | 2[0]
PWM_1_out| 3 [2[1] CY8C4245AXI-483 07| 31 |sw2
J2 05(4 |2[2] 0[6]f 30 [Timer Fin
J2 0T[5 |2[3] In use 0[5]f 29 (J4_02
ADCO[B |2[4] Available/Unused O[4]| 28 (J4_01
J2 1) T |2[5] Special purpose 03]} 2¢ [PWM_3 out
ADC2P| 8 |2[6] Power/Ground 0[2]| 26 (PWM_2 out
ADC2M| 9 [2[7] 01| 25 (LPCompM
10 R of]| 22 |LPcompP
[2C:scl| 171 |3[0] 4[3]] 23
=
S ST M D T M - N S S = W)
] (4] (4] (]] (4] (4] I I =T
[o = L Liw] - oo E = -— [|
— = | = | | | = | — L I o
£0x8883 I Xz
= I | 1 I - = £
229395 EES§
o e
7 J 3 2
-
ek}
w
3
&

November 2013 11 of 52

BSP for CY8CKIT-042 v1.0

Figure 3: Device Pin Layout - IDAC-enabled

0
L
—
oD | Lo [o Law] —
a2 T T T 8
- e e T B B
= ||| = | D | 0D]|
= |=F | = | = | = |02 (02 | 07
* kb IT Do g
IDAC out| 2 |2[0]

PWM_1_out| 3 |2[1] CY8C4245AXI-483 o7| 31 [sw2
J2_05] 4 |2[2] 0[6]l 30 [Timer_Pin
J2_ 07 5 |2[3] In use 0[] 29 (J4_02
ADCO| 6 |2[4] Awailable/Unused 0[4]] 28 |[J4_01
J2 1) T |2[5] Special purpose 03]} 2¢ [PWM_3 out
ADC2P| 8 |2[6] Power/Ground 0[2]] 26 [PWM_2_out
ADC2M 9 |2[7] 01 25 [LPComph

10 JEE op]| 24 |LPCompP
12C:scl| 11 | 3[0] 4[3]] 23
=
M S TN S -)
L N o T L TR L0 T L TR b S L = =t =r
[Loy =T L oo - oo ED — [
— | | | |= | | = L I I o Y
20 x 38883 IZ
] g S o 2w 'r:_c 'n_c
E = g = 03 5 3 T =
in 3 3

12 of 52 November 2013

v1.0

Device Pin Functions

BSP for CY8CKIT-042

This table lists all pins with their function and configuration. Note that some pins have different
uses in the CapSense- and IDAC-enabled designs.

Table 6: Device Pins

Pin | Port Name Type Drive Mode
1 VSS VSS Power

2 P2[0] Use is dependent upon design (CapSense or IDAC) — see figures below
3 P2[1] PWM_1_out Digital Out Strong drive
4 P2[2] J2_05 Software Strong drive
5 P2[3] J2_07 Software Strong drive
6 P2[4] ADCO Analog HiZ analog
7 P2[5] J2 11 Software Strong drive
8 P2[6] ADC2P Analog HiZ analog
9 P2[7] ADC2M Analog HiZ analog
10 VSS VSS Power

11 |[P3[0] |I2C:scl Digital In oD, DL

12 |[P3[1] |lI2C:sda Digital In oD, DL

13 [P3[2] |GPIO [unused]

14 |P3[3] |GPIO [unused]

15 P3[4] J3_03 Software Strong drive
16 P3[5] J4_06 Software Strong drive
17 P3[6] J3_02 Software Strong drive
18 P3[7] J4_04 Software Strong drive
19 vVDDD |VvDDD Power

20 P4[0] UART:rx Digital In HiZ digital
21 P4[1] UART:tx Digital Out Strong

22 P4[2] Use is dependent upon design (CapSense or IDAC) — see figures below
23 | P4[3] |GPIO [unused]

24 PO[O] LPCompP Analog HiZ analog
25 PO[1] LPCompM Analog HiZ analog
26 PO[2] PWM_2_ out Digital Out Strong

27 PO[3] PWM_3_out Digital Out Strong

28 PO[4] J4a_01 Software Strong

November 2013

13 of 52

BSP for CY8CKIT-042

Pin | Port Name Type Drive Mode

29 PO[5] J4 02 Software Strong

30 PO[6] Timer_Pin Digital In Res pull dn

31 PO[7] SW2 Digital In Res pull up

32 XRES XRES Power

33 VCCD |VCCD Power

34 vVDDD |VvDDD Power

35 VDDA | VDDA Power

36 VSSA VSSA Power

37 P1[0] ADC1 Analog HiZ analog

38 P1[1] Use is dependent upon design (CapSense or IDAC) — see figures below
39 P1[2] Use is dependent upon design (CapSense or IDAC) — see figures below
40 P1[3] Use is dependent upon design (CapSense or IDAC) — see figures below
41 P1[4] Use is dependent upon design (CapSense or IDAC) — see figures below
42 P1[5] Use is dependent upon design (CapSense or IDAC) — see figures below
43 P1[6] RED_LED Digital Out Strong drive

44 P1[7] J3_08 Software Strong drive

Figure 4: Device Pins continued (CapSense-enabled)

Pin | Port Name Type Drive Mode

2 P2[0] J2 01 Software Strong drive

22 P4[2] CapSense:Cmod A/D Out HiZ analog

38 P1[1] CapSense:Sns[0] Analog HiZ analog

39 P1[2] CapSense:Sns[0] Analog HiZ analog

40 P1[3] CapSense:Sns[0] Analog HiZ analog

41 P1[4] CapSense:Sns[0] Analog HiZ analog

42 P1[5] CapSense:Sns[0] Analog HiZ analog

Figure 5: Device Pins continued (IDAC-enabled)

Pin | Port Name Type Drive Mode

2 P2[0] IDAC_out A/D Out HiZ analog

22 P4[2] GPIO [unused]

38 P1[1] J2 18 Software Strong drive

39 P1[2] J2_16 Software Strong drive

14 of 52

November 2013

v1.0

v1.0 BSP for CY8CKIT-042

Pin | Port Name Type Drive Mode
40 P1[3] J2 12 Software Strong drive
41 P1[4] J2_10 Software Strong drive
42 P1[5] J2_08 Software Strong drive

The reset state of all non-power pins is high impedance analog unbuffered.
Abbreviations used in Table 6 have the following meanings:

¢ GPIO = General Purpose 10

e SIO = Special 10

e Respullup = Resistive pull up

e Respulldn = Resistive pull down

e Strong = Strong drive (digital output)
e HiZ analog = High impedance analog

e OD, DL = Open drain, drives low

e OD, DH = Open drain, drives high

For more information on reading, writing and configuring pins please refer to:

e Application Programming Interface section in the cy pins component datasheet

Using the cy pins Component

Some pins are dedicated to hardware functions, like the UART or ADC, and others are
accessible from software. Those named after the header to which they are connected, e.g.
J2_05, are software pins. Those named after their associated hardware function should
(typically) not be accessed using the software APIs. It is not recommended to change the
behavior of these pins from software or to attempt to read/write them.

Important: Note that the string “Jx_yy” in the following APIs should be replaced with the name
of the cy_pins component listed in Table 6, e.g. J2_05_Read().

Table 7: cy_pins APIs

Function Description

Jx_yy Read() Reads the physical port and returns the current value for all pins
in the component

JIx_yy_ Write() Writes the value to the component pins while protecting other
pins in the physical port if shared by multiple Pins components

Jx_yy_ ReadDataReg() Reads the current value of the port’s data output register and
returns the current value for all pins in the component

Jx_yy_SetDriveMode() Sets the drive mode for each of the Pins component’s pins

November 2013 15 of 52

http://www.cypress.com/go/comp_cy_pins

BSP for CY8CKIT-042 v1.0

Function Description

Jx_yy_Clearinterrupt() Clears any active interrupts on the port into which the
component is mapped. Returns value of interrupt status register

16 of 52 November 2013

v1.0 BSP for CY8CKIT-042

Clocks

The clock system includes these clock resources.
e Two internal clock sources:
o 3to 48 MHz Internal Main Oscillator (IMO) 2% at 3 MHz
o 32 kHz Internal Low Speed Oscillator (ILO) output
¢ HFCLK can be generated using an external signal from EXTCLK pin
o Twelve clock dividers, each with 16-bit divide capability:
o Eight can be used for fixed-function blocks
o Four can be used for the UDBs

Figure 6: System Clock Configuration

IMO
3-48 MHz HFCLK

EXTCLK XF——

ILO
32 kHz

» LFCLK

System Clocks

System clocks are sources that are available from the PSoC 4 clock block. These clocks are
used to create clocks used in the actual design.

Table 8: System Clocks

Name Domain Source Freq Accuracy Start at
(MHz) (%) Reset
LFCLK NONE ILO 0.032 +30 True
ILO NONE 0.032 +30 True
SYSCLK NONE HFCLK 48 +2 True
EXTCLK NONE 0 +0 False
IMO NONE 48 +2 True
HFCLK NONE Direct_Sel 48 +2 True

November 2013 17 of 52

BSP for CY8CKIT-042

Local Clocks

Local clocks are derived from system clocks and drive individual analog and digital components.

Figure 7: Local Clock Configuration

HFCLK

v1.0

Prescaler

i

SYSCLK

16—.b|.t UDB UDBN
Dividers
x4
16—b|'t‘Anang — SAR clock
Divider
16-bit Digital
Peripheral |— PERXYZ_CLK
Dividers X7

Note that the two CapSense clocks in the following table only exist in the CapSense-enabled

design.

Table 9: Local Clocks

Name Domain Source Freq Accuracy Start at
(MHz) | (%) Reset
ADC _intClock FIXED_FUNCTION | HFCLK 2.1818 |2 True
UART_SCBCLK FIXED_FUNCTION | HFCLK 0.1151 |2 True
12C_SCBCLK FIXED_FUNCTION | HFCLK 1.6 +2 True
PWM_Clock FIXED_FUNCTION | HFCLK 1 +2 True
Debounce_Clock DIGITAL HFCLK 0.0001 |[#2 True
Timer_Clock FIXED_FUNCTION | HFCLK 0.001 +2 True
CapSense_SenseClk | FIXED_FUNCTION | HFCLK 1 2 True
CapSense_SampleClk | FIXED_FUNCTION | HFCLK 24 +2 True

For more information on clocking resources, please refer to:

e Clocking System chapter in the PSoC 4 Technical Reference Manual

e}

O

18 of 52

Clocking chapter in the System Reference Guide

CyIMO API routines
CyILO API routines

November 2013

http://www.cypress.com/go/psoc4_trm
http://www.cypress.com/go/comp_cy_boot

v1.0

BSP for CY8CKIT-042

Using the cy clock Component

The local clocks listed in Table 9 can be managed from software using the following APIs. Note
that changing the ADC or 12C clocks is very likely to have unintended consequences on
component behavior, and is not recommended.

Important: Note that the string “Clockname” in the following APIs should be replaced with the
name of the cy_clock component listed in the Design Contents chapters, e.g.

PWM_Clock_Start().

Table 10: cy_clock APIs

Function

Description

Clock_Start()

Enables the clock.

Clock_Stop()

Disables the clock.

Clock_SetDivider()

Sets the divider of the clock and restarts the clock divider
immediately.

Clock_SetDividerValue()

Sets the divider of the clock and restarts the clock divider
immediately.

Clock_GetDividerRegister()

Gets the clock divider register value.

Clock_SetFractionalDividerRegister()

Sets the fractional divider of the clock and restarts the clock divider
immediately.

Clock_GetFractionalDividerRegister()

Gets the fractional clock divider register value.

November 2013 19 of 52

BSP for CY8CKIT-042 v1.0

Interrupts

This design contains the following interrupt components: (0 is the highest priority).

Note that some components, such as 12C, include “buried” interrupts. These are not shown in
the Design Contents section below and are typically enabled/disabled by the component
Start/Stop APIs.

Note that the CapSense ISR in the following table only exists in the CapSense-enabled design.

Table 11: Interrupts

Name Priority Vector Integrated into
Component

ADC_EOC_Int 3 1 No
ADC_IRQ 3 14 Yes
I2C_SCB_IRQ 3 11 Yes
LPComp_Active_lInt 3 2 No
LPComp_Wakeup_Int 3 8 No
PWM_1_Int 3 19 No
PWM_2_Int 3 17 No
PWM_3_Int 3 18 No
SW2_Active_Int 3 3 No
SW2_Wakeup_Int 3 0 No
Timer_Int 3 16 No

UART _Int 3 10 No
CapSense_ISR 3 15 Yes

For more information on interrupts, please refer to:

e Interrupt Controller chapter in the PSoC 4 Technical Reference Manual

e Interrupts chapter in the System Reference Guide

o Cyint API routines and related registers

e Datasheet for cy isr component

Global Interrupt Control

The following macros enable/disable all interrupts in the system. Note that some RTOS
implementations enable interrupts in the OS startup code.

o CyGlobalintEnable
e CyGloballntDisable

20 of 52 November 2013

http://www.cypress.com/go/psoc4_trm
http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/comp_cy_isr

v1.0 BSP for CY8CKIT-042

Note that these macros do not require trailing parentheses (i.e. the instruction
“CyGloballntEnable;” will enable interrupts).

Using the cy_isr Component

The interrupts listed in Table 11 can be managed from software. In some cases the interrupts
have been integrated into the component that uses them (e.g. 12C) and in others they are
independent (e.g. SW2_Interrupt). The integrated interrupts are handled by the component APls
and do not need to be set up and enabled in application code. The independent interrupts
(marked “No” in the “Integrated into Component” column of Table 11) are visible in the
schematic sheets below and need to be set up by the user (if required).

The following macros are useful for creating ISR routines that are compatible with the cy_isr
APIs. These macros provide consistent definition of interrupt service routines across compilers
and platforms. Note that the macro to use is different between the function definition and the
function prototype.

Function prototype example:
CY_ISR_PROTO(MyISR);
Function definition example:
CY_ISR(MyISR)
{
/* ISR Code here */

}

ISRs that are declared and defined in this way can be installed using the ISRname_StartEx()

API below.

Important: Note that the string “ISRname” in the following APIs should be replaced with the
name of the cy_isr component listed in Table 11, e.g. SW2_Active_Int_StartEx().

Table 12: cy _isr APIs

Function

Description

ISRname_Start()

Sets up the interrupt to function.

ISRname_StartEx()

Sets up the interrupt to function and sets address as the ISR
vector for the interrupt.

ISRname_Stop()

Disables and removes the interrupt.

ISRname_Interrupt()

The default interrupt handler for ISR.

ISRname_SetVector()

Sets address as the new ISR vector for the Interrupt.

ISRname_GetVector()

Gets the address of the current ISR vector for the interrupt.

ISRname_SetPriority()

Sets the priority of the interrupt.

ISRname_GetPriority()

Gets the priority of the interrupt.

ISRname_Enable()

Enables the interrupt to the interrupt controller.

ISRname_GetState()

Gets the state (enabled, disabled) of the interrupt.

November 2013 21 of 52

BSP for CY8CKIT-042

v1.0

Function

Description

ISRname_Disable()

Disables the interrupt.

ISRname_SetPending()

Causes the interrupt to enter the pending state, a software
method of generating the interrupt.

ISRname_ClearPending()

Clears a pending interrupt.

22 of 52

November 2013

v1.0

Flash Memory

PSoC 4 devices offer a host of Flash protection options and device security features that you

can leverage to meet the security and protection requirements of an application. These

BSP for CY8CKIT-042

requirements range from protecting configuration settings or Flash data to locking the entire
device from external access.

Table 13: Flash Protection Settings

Start Address

End Address

Protection Level

0x0

OX7FFF

U - Unprotected

Flash memory is organized as rows with each row of flash having 128 bytes. Each flash row can
be assigned one of four protection levels:

e U - Unprotected

e F - External read protect (Factory upgrade)

o R - External write protect (Field upgrade)

e W - Full Protection

For more information on Flash memory and protection, please refer to:
e Flash Protection chapter in the PSoC 4 Technical Reference Manual
e Flash and EEPROM chapter in the System Reference Guide

o CyFlash API routines

o CyWrite API routines

November 2013

23 of 52

http://www.cypress.com/go/psoc4_trm
http://www.cypress.com/go/comp_cy_boot

BSP for CY8CKIT-042 v1.0

Design Contents

This chapter describes how the PSoC was configured. You may change, add to, or delete from,
this configuration by editing the TopDesign.cycsh file in PSoC Creator.

This design's schematic content consists of the following schematic sheets.

UART

The UART supports two-way serial communication through a pair of Tx and Rx pins (P4[1:0]).
These pins are connected to J3_09 (Rx) and J3_10 (Tx) on the Pioneer Kit.

The UART can also be accessed from a PC running a terminal emulator, through the PSoC 5LP
USB-UART bridge. This is described in detail in the Pioneer Kit Guide. Note that the kit guide
expects the UART pins to be on PO[5:4] but this design uses P4[1:0]. This means that the wiring
is different. To enable the bridge with this design make the following connections.

e UART:rx —J3_09 to J8_10
e UART:tx—J3_10t0 J8_09

The UART is implemented in a hardware block called an SCB — Serial Communication Block.

An SCB can be configured as a UART, I12C or SPI using PSoC Creator. Note that some APls

are rather long, and refer to the different uses of the block, in order to support all modes of the
SCB hardware.

Figure 8: UART Schematic

UART
UART

interrupt UART _Int

Standard

This schematic contains the following component instances (click links for details on features
and APIs).

¢ Instance UART (type: SCB P4 vl 10)

e Instance UART_Int (type: cy isr vl 70)
o See the chapter on Using the cy_isr Component for APl information.

Table 14: UART Parameters

Parameter Name Value Description

Data Rate 9600 UART baud rate in kbps.

Direction TX + RX Enables RX and TX direction.

Data Bits 8 bits Number of data bits inside the UART byte/word.
Parity None Parity check as Odd or Even or none.

24 of 52 November 2013

http://www.cypress.com/go/cy8ckit-042
http://www.cypress.com/go/comp_scb_p4
http://www.cypress.com/go/comp_cy_isr

v1.0 BSP for CY8CKIT-042

Parameter Name Value Description
Stop Bits 1 bit Number of Stop bits.
Rx Buffer Size 8 Size of the RX buffer.

The value 8 implies the usage of hardware RX FIFO.
Greater values imply usage of internal software buffer
along with RX FIFO.

Rx Trigger Level 7 Number of entries in the RX FIFO to trigger the
SCB.INTR_RX.TRIGGER interrupt event.

Tx Buffer Size 8 Size of the TX buffer.

The value 8 implies usage of hardware TX FIFO.
Greater values imply the usage of internal software
buffer along with TX FIFO.

Tx Trigger Level 0 Number of entries in the TX FIFO to trigger the
SCB.INTR_TX.TRIGGER interrupt event.

Wake Enable false Enables the wakeup from Deep Sleep on start bit event.
The actual wakeup source is RX GPIO. The skip start
UART feature allows it to continue receiving bytes.

Drop On Frame Err false Determines whether the data is dropped from RX FIFO
on a frame error event.

Drop On Parity Err false Determines whether the data is dropped from RX FIFO
on a parity error event.

Oversampling Factor 12 Oversampling factor of SCBCLK.

Median Filter Enable false Applies a digital 3 tap median filter to the UART input
line.

Table 15: UART Interrupt Sources

Parameter Name Value Description

Rx Frame Err true SCB.INTR_RX.FRAME_ERROR: frame error in
received data frame.

Rx Full true SCB.INTR_RX.FULL: RX FIFO is full.

Rx Not Empty true SCB.INTR_RX.NOT_EMPTY: RX FIFO is not empty.
There is at least one entry to get data from.

Rx Overflow true SCB.INTR_RX.OVERFLOW: attempt to write to a full
RX FIFO.

Rx Parity Err true SCB.INTR_RX.PARITY_ERROR: parity error in

received data frame.

Rx Trigger false SCB.INTR_RX.TRIGGER: RX FIFO has more entries
than the value specified by UartRxTriggerLevel.

Rx Underflow true SCB.INTR_RX.UNDERFLOW: attempt to read from an
empty RX FIFO.

Tx Empty true SCB.INTR_TX.EMPTY: TX FIFO is empty.

November 2013 25 of 52

BSP for CY8CKIT-042

v1.0

Parameter Name Value Description

Tx Not Full true SCB.INTR_TX.NOT_FULL: TX FIFO is not full. There is
at least one entry to put data.

Tx Overflow true SCB.INTR_TX.OVERFLOW: attempt to write to a full
TX FIFO.

Tx Trigger false SCB.INTR_TX.TRIGGER: TX FIFO has fewer entries
than the value specified by UartTxTriggerLevel.

Tx Uart Done true SCB.INTR_TX.UART_DONE: all data are sentinto TX
FIFO and the transmit FIFO and the shifter register are
emptied.

Tx Underflow true SCB.INTR_TX.UNDERFLOW: attempt to read from an

empty TX FIFO.

Table 16;: UART APIs

Function

Description

UART _Init()

Initialize the SCB component according to defined
parameters in the customizer.

UART_Enable()

Enables SCB component operation.

UART_Start()

Starts the SCB.

UART_Stop()

Disable the SCB component.

UART_Sleep()

Prepares component to enter Deep Sleep.

UART_Wakeup()

Prepares component to exit Deep Sleep.

UART_Uartlnit()

Configures the SCB for SPI operation.

UART_UartPutChar()

Places a byte of data in the transmit buffer to be sent at the
next available bus time.

UART_UartPutString()

Places a NULL terminated string in the transmit buffer to be
sent at the next available bus time.

UART_UartPutCRLF()

Places byte of data followed by a carriage return (0xOD) and
line feed (Ox0A) to the transmit buffer

UART_UartGetChar()

Retrieves next data element from receive buffer.

UART_UartGetByte()

Retrieves next data element from the receive buffer

UART_UartSetRxAddress()

Sets the hardware detectable receiver address for the
UART in Multiprocessor mode.

UART_UartSetRxAddressMask()

Sets the hardware address mask for the UART in
Multiprocessor mode.

UART_SpiUartWriteTxData()

Places a data entry into the transmit buffer to be sent at the
next available bus time. This function is common for SPI
and UART.

UART_SpiUartPutArray()

Places an array of data into the transmit buffer to be sent.

26 of 52

November 2013

v1.0

BSP for CY8CKIT-042

Function

Description

This function is common for SPl and UART.

UART _SpiUartGetTxBufferSize()

Returns the number of elements currently in the transmit
buffer. This function is common for SPI and UART.

UART_SpiUartClearTxBuffer()

Clears the transmit buffer and TX FIFO. This function is
common for SPI and UART.

UART_SpiUartReadRxData()

Retrieves the next data element from the receive buffer.
This function is common for SPl and UART.

UART_SpiUartGetRxBufferSize()

Returns the number of received data elements in the
receive buffer. This function is common for SPl and UART

UART_SpiUartClearRxBuffer()

Clear the receive buffer and RX FIFO. This function is
common for SPI and UART.

Table 17: UART Interrupt APIs

Function

Description

UART_Enablelnt()

When using an Internal interrupt, this enables the interrupt
in the NVIC.

UART _Disablelnt()

When using an Internal interrupt, this disables the interrupt
in the NVIC.

UART_GetlInterruptCause()

Returns a mask of bits showing what the source of the
current triggered interrupt.

UART_SetCustominterruptHandler()

Registers a function to be called by the internal interrupt
handler.

UART_SetTxInterruptMode()

Configures which bits of TX interrupt request register will
trigger an interrupt event.

UART_GetTxInterruptMode()

Returns TX interrupt mask

UART_GetTxInterruptSourceMasked()

Returns TX interrupt request register masked by interrupt
mask

UART_GetTxInterruptSource()

Returns the bit-mask of pending TX interrupt sources

UART_ClearTxInterruptSource()

Clears the bit-mask of pending TX interrupt sources

UART_SetTxInterrupt()

Generates interrupt event from bit-mask of TX interrupt
sources

UART_SetRxInterruptMode()

Configures which bits of RX interrupt request register will
trigger an interrupt event

UART_GetRxInterruptMode()

Returns RX interrupt mask

UART_GetRxInterruptSourceMasked()

Returns RX interrupt request register masked by interrupt
mask

UART_GetRxInterruptSource()

Returns the bit-mask of pending RX interrupt sources

UART _ClearRxInterruptSource()

Clears the bit-mask of pending RX interrupt sources

November 2013 27 of 52

BSP for CY8CKIT-042 v1.0

Function Description
UART_SetRxInterrupt() Generates interrupt event from bit-mask of RX interrupt
sources

Table 18: UART _Int Parameters

Parameter Name Value Description

Interrupt Type LEVEL IRQ source is sticky and remains active until firmware
clears the source of the request with an action.

12C

The 12C supports two-way serial communication through a pair data (sda) and clock (scl) pins
(P3[1:0]). These pins are connected to J3_04 (scl) and J3_05 (sda) on the Pioneer kit.

The 12C protocol is implemented in ISRs that are installed and managed from the APIs below.
These APIs maintain the content of read and write buffers so that 12C communication is
possible with the minimum of user-provided firmware. You should install custom interrupt
handlers if you wish to act on 12C events.

I12C can also be accessed from a PC running a terminal emulator, through the PSoC 5LP USB-
UART bridge. This is described in detail in the Pioneer Kit Guide.

I12C is implemented in a hardware block called an SCB — Serial Communication Block. An SCB
can be configured as a UART, 12C or SPI using PSoC Creator. Note that some APIs are rather
long, and refer to the different uses of the block, in order to support all modes of the SCB
hardware.

Figure 9: 12C Schematic

12C
12C

Slave

This schematic contains the following component instances (click links for details on features
and APIs).

e Instance I12C (type: SCB P4 v1 10)

Table 19: I12C Parameters

Parameter Name Value Description

Mode Slave Defines the 12C operation mode as: Slave, Master, Multi-
Master or Multi-Master-Slave.

Data Rate 100 Data rate in kbps. The standard data rates are: 50, 100,
400 and 1000 kbps.

Slave Address 0x8 The 7-bit slave address (MSB ignored).

28 of 52 November 2013

http://www.cypress.com/go/cy8ckit-042
http://www.cypress.com/go/comp_scb_p4

v1.0

BSP for CY8CKIT-042

Parameter Name Value Description

Slave Address Mask OxFE Slave address mask.

Bit value 0 — excludes bit from address comparison.
Bit value 1 — the bit needs to match with the
corresponding bit of the 12C slave address.

I2cWakeEnable true Enables wakeup from Deep Sleep on an 12C address
match event.

Accept Address false Specifies whether to accept a match 12C slave address
in the RX FIFO or not. This option could be used for
software address matching.

Median Filter Enable false Applies a digital 3 tap median filter to the 12C lines.

Oversampling Factor 16 Oversampling factor of SCBCLK.

Table 20: 12C APIs

Function Description

12C_Init() Initialize the SCB component according to defined
parameters in the customizer.

I12C_Enable() Enables the SCB component operation.

[12C_Start() Starts the SCB component.

12C_Stop() Disable the SCB component.

12C_Sleep() Prepares the SCB component to enter Deep Sleep.

12C_Wakeup() Prepares the SCB component to exit Deep Sleep.

12C_I2Clnit() Configures the SCB component for operation in 12C mode.

I2C_I12CSlaveStatus()

Returns slave status flags.

I2C_I12CSlaveClearReadStatus()

Returns read status flags and clears slave read status flags.

I12C_I12CSlaveClearWriteStatus()

Returns the write status and clears the slave write status
flags.

I2C_12CSlaveSetAddress()

Sets slave address, a value between 0 and 127 (0x00 to
OX7F).

I2C_I2CSlaveSetAddressMask()

Sets slave address mask, a value between 0 and 254 (0x00
to OXFE).

I12C_I2CSlavelnitReadBuf()

Sets up the slave receive data buffer (master <- slave).

I12C_I2CSlavelnitWriteBuf()

Sets up the slave write buffer (master -> slave).

I2C _12CSlaveGetReadBufSize()

Returns the number of bytes read by the master since
I2C_I2CSlaveClearReadBuf() was called.

12C_12CSlaveGetWriteBufSize()

Returns the number of bytes written by the master since
I2C_I12CSlaveClearWriteBuf() was called.

I2C_lI2CSlaveClearReadBuf()

Resets the read buffer counter to zero.

November 2013 29 of 52

BSP for CY8CKIT-042

v1.0

Function

Description

I2C_l12CSlaveClearWriteBuf()

Resets the write buffer counter to zero.

Table 21: 12C Interrupt APIs

Function

Description

12C_Enablelnt()

When using an Internal interrupt, this enables the interrupt
in the NVIC.

I2C_Disablelnt()

When using an Internal interrupt, this disables the interrupt
in the NVIC.

I2C_GetinterruptCause()

Returns a mask of bits showing what the source of the
current triggered interrupt.

12C_SetCustominterruptHandler()

Registers a function to be called by the internal interrupt
handler.

12C_SetTxInterruptMode()

Configures which bits of TX interrupt request register will
trigger an interrupt event.

12C_GetTxInterruptMode()

Returns TX interrupt mask

12C_GetTxInterruptSourceMasked()

Returns TX interrupt request register masked by interrupt
mask

12C_GetTxInterruptSource()

Returns the bit-mask of pending TX interrupt sources

12C_ClearTxInterruptSource()

Clears the bit-mask of pending TX interrupt sources

12C_SetTxInterrupt()

Generates interrupt event from bit-mask of TX interrupt
sources

12C_SetRxInterruptMode()

Configures which bits of RX interrupt request register will
trigger an interrupt event

12C_GetRxInterruptMode()

Returns RX interrupt mask

12C_GetRxInterruptSourceMasked()

Returns RX interrupt request register masked by interrupt
mask

12C_GetRxInterruptSource()

Returns the bit-mask of pending RX interrupt sources

12C_ClearRxInterruptSource()

Clears the bit-mask of pending RX interrupt sources

12C_SetRxInterrupt()

Generates interrupt event from bit-mask of RX interrupt
sources

12C_SetMasterinterruptMode()

Configures which bits of Master interrupt request register
will trigger an interrupt event

I2C_GetMasterInterruptMode()

Returns Master interrupt mask

[12C_GetMasterInterruptSourceMasked()

Returns Master interrupt request register masked by
interrupt mask

I2C_GetMasterInterruptSource()

Returns the bit-mask of pending Master interrupt sources

I2C_ClearMasterInterruptSource()

Clears the bit-mask of pending Master interrupt sources

30 of 52

November 2013

v1.0 BSP for CY8CKIT-042

Function Description

I2C_SetMasterInterrupt() Generates interrupt event from bit-mask of Master interrupt
sources

I2C_SetSlavelnterruptMode() Configures which bits of Slave interrupt request register will
trigger an interrupt event

I2C_GetSlavelnterruptMode() Returns Slave interrupt mask

I2C_GetSlavelnterruptSourceMasked() Returns Slave interrupt request register masked by interrupt
mask

I2C_GetSlavelnterruptSource() Returns the bit-mask of pending Slave interrupt sources

I2C_ClearSlavelnterruptSource() Clears the bit-mask of pending Slave interrupt sources

I2C_SetSlavelnterrupt() Generates interrupt event from bit-mask of Slave interrupt
sources

PWMs

Three PWMs, all driven from the same 1MHz clock, are used to drive the RGB LED on the
Pioneer kit. PWM_1 drives the red LED, PWM_2 the green LED and PWM_3 the blue LED.

In addition, the PWM outputs are routed to the kit headers. For PWM_2 and PWM_3 the kit
routes the signal directly to both the LED and the header. For PWM_1 the kit does not route the
signal to the header. To match the functionality to the other PWMs the signal is routed inside the
PSoC device to another pin, which is available on a header.

These are the pin mappings for the PWMs.

e RED_LED (from PWM_1) connects to P1[6], which is connected the red LED.

¢ PWM_1 out also connects to P2[1], which is routed to header J2_03.

e PWM_2 out connects to PO[2], which is routed to the green LED and header J2_02.
e PWM_3 out connects to PO[3], which is routed to the blue LED and header J2_04.

The PWNMs are implemented in a hardware block called a TCPWM — Timer/Counter/PWM. A
TCPWM can be configured as a Timer/Counter, PWM or Quadrature Decoder using PSoC
Creator.

Note that, in the figure below the blue components are documentation. They show the (active
low) connections of the LEDs on the Pioneer Kit.

November 2013 31 of 52

BSP for CY8CKIT-042

Figure 10: PWM Schematic

PWM_Clock [T}

PWM_1

PWM

ov
un
cc

line
line_n

]

S

PWM_1_out

RED_LED

Vdd

interrupt PWM_1_Int

“

Red ¥

PWM_2
PWM
oV =]
unts
ccle
. Vdd
line {=]
line.n - PWM_2_out K—T
clock Greenkx’
interrupt PWM_2_Int

Vdd

PWM_3
PWM
ov|=]
un e
cclel
line (£
e o] PWM_3_out
clock Blue Xi'
interrupt PWM_3_Int

v1.0

This schematic contains the following component instances (click links for details on features

and APIs).

Instance PWM_1, PWM_2 and PWM_3 (type: TCPWM vl 0)

Instance PWM_Clock (type: cy clock v2 10)

See the chapter on Using the cy clock Component for API information.
Instance RED_LED, PWM_1 out, PWM_2 out and PWM_3_out (type: cy pins vl 90)
See the chapter on Using the cy pins Component for APl information.

Instance PWM_1_Int, PWM_2 Int and PWM_3 Int (type: cy isr vl 70)

See the chapter on Using the cy isr Component for API information.

32 of 52

November 2013

http://www.cypress.com/go/comp_tcpwm_p4
http://www.cypress.com/go/comp_cy_clock
http://www.cypress.com/go/comp_cy_pins
http://www.cypress.com/go/comp_cy_isr

v1.0

Table 22: PWM APIs

BSP for CY8CKIT-042

Function

Description

PWM_n_Init()

Initialize/Restore default TCPWM configuration

PWM_n_Enable()

Enables the TCPWM. TCPWM will be started if the Start
terminal is not present

PWM_n_Start()

Initializes the TCPWM with default customizer values
when called the first time and enables the TCPWM.
TCPWM will be started if the Start terminal is not present

PWM_n_Stop()

Disables the TCPWM

PWM_n_SetMode()

Sets the operational mode of the TCPWM

PWM_n_SetPrescaler()

Sets the prescaler value that is applied to the clock input

PWM_n_TriggerCommand()

Triggers the designated command to occur on the
designated TCPWM instances

PWM_n_SetPWMMode()

Writes the control register that determines what mode of
operation the TCPWM output lines are driven in

PWM_n_SetPWMSyncKill()

Writes the register that controls whether the TCPWM Kill
signal (stop input) causes an asynchronous or
synchronous kill operation

PWM_n_SetPWMStopOnKill()

Writes the register that controls whether the TCPWM Kkill
signal (stop input) causes the TCPWM counter to stop

PWM_n_SetPWMinvert()

Writes the bits that control whether the line and line_n
outputs are inverted from their normal output values

PWM_n_SetinterruptMode()

Sets the interrupt mask to control which interrupt requests
generate the interrupt signal

PWM_n_GetinterruptSourceMasked()

Gets the interrupt requests masked by the interrupt mask

PWM_n_GetinterruptSource()

Gets the interrupt requests (without masking)

PWM_n_Clearlnterrupt()

Clears the interrupt request

PWM_n_Setinterrupt()

Sets a software interrupt request

PWM_n_WriteCounter()

Writes a new 16 bit counter value directly into the counter
register

PWM_n_ReadCounter()

Reads the current counter value

PWM_n_SetCounterMode()

Sets the counter mode

PWM_n_SetPeriodSwap()

Writes the register that controls whether the period
registers are swapped

PWM_n_SetCompareSwap()

Writes the register that controls whether the compare
registers are swapped

PWM_n_WritePeriod()

Writes the 16 bit period register with the new period value

PWM_n_ReadPeriod()

Reads the 16 bit period register

November 2013 33 0of 52

BSP for CY8CKIT-042

v1.0

Function

Description

PWM_n_WritePeriodBuf()

Writes the 16 bit period buffer register with the new period
value

PWM_n_ReadPeriodBuf()

Reads the 16 bit period buffer register

PWM_n_WriteCompare()

Writes the 16 bit compare register with the new compare
value

PWM_n_ReadCompare()

Reads the compare register

PWM_n_WriteCompareBuf()

Writes the 16 bit compare buffer register with the new
compare value

PWM_n_ReadCompareBuf()

Reads the compare buffer register

PWM_n_SetCaptureMode()

Sets the capture trigger mode

PWM_n_SetReloadMode()

Sets the reload trigger mode

PWM_n_SetStartMode()

Sets the start trigger mode

PWM_n_SetStopMode()

Sets the stop trigger mode

PWM_n_SetCountMode()

Sets the count trigger mode

PWM_n_ReadStatus()

Reads the status of the TCPWM

Table 23: PWM Interrupt Sources

Parameter Name Value Description

Terminal count true Interrupt when the timer hits its terminal count value

Compare/Capture true Interrupt when the compare or capture inputs are
asserted.

Table 24: PWM_Clock Parameters

Parameter Name Value Description

Frequency 1MHz Clock frequency.

Source HFCLK Source clock, from which this clock is derived.

Divider 48 Local divider value to obtain desired frequency from
source clock.

Accuracy +/- 2% Accuracy of the source clock.

Table 25: RED_LED and PWM_n_out Parameters

Parameter Name Value Description

Type Digital Output Output pin.

Drive Mode Strong Strong drive.

Initial State 1 Initial value written to the pin’s data register after power-
on reset (POR).

34 of 52 November 2013

v1.0

BSP for CY8CKIT-042

Parameter Name Value Description
Slew Rate Fast Rise and fall ramp rate for the pin as it
changes output logic levels. Fast mode is required for
signals that switch at greater than
1 MHz.
Drive level Vddio Output drive voltage supply sourced by the pin.
Current 4mA source The amount of current that can be sourced/sunk at the
8mA sink pin.

Table 26: PWM_n_Int Parameters

Parameter Name

Value

Description

Interrupt Type

LEVEL

IRQ source is sticky and remains active until firmware
clears the source of the request with an action.

Debounced Switch

SW2 is a switch on the Pioneer kit. It is connected to PO[7] on the PSoC device. The input
signal is connected to a debouncer component that filters out button “ringing”.

Note that, in the figure below the blue components are documentation. They show the (active
low) connection of the switch on the Pioneer Kkit.

There are two interrupts associated with the switch. The SW2_Wakeup_Int is intended to be
used to wake the device from sleep states. This interrupt can be used in active state but is not
debounced and so can generate multiple IRQs for every button press. The SW2_Active_Int is
debounced and is intended to be used when the device is in the active state. SW2_Active_Int
cannot wake the part from a sleep state.

Figure 11: Debounced Switch Schematic

irq

Tom|—

Debouncer

[#1SW2_Wakeup_|Int

Debouncer

I
Pins
Vss SW2

Debounce_Clock [JULH

100 Hz

d

q

either
clock

SW2_Active_Int

This schematic contains the following component instances (click links for details on features

and APIs).

¢ Instance Debouncer (type: Debouncer vl 0)

e Instance Debounce_Clock (type: cy clock v2 10)

o See the chapter on Using the cy clock Component for API information.

e Instance SW2 (type: cy pins vl 90)

o See the chapter on Using the cy pins Component for API information.

November 2013 35 of 52

http://www.cypress.com/go/comp_debouncer
http://www.cypress.com/go/comp_cy_clock
http://www.cypress.com/go/comp_cy_pins

BSP for CY8CKIT-042

v1.0

e Instance SW2_Wakeup and SW2_Active_Int (type: cy_isr vl 70)

o See the chapter on Using the cy_isr Component for APl information.

Table 27: Debouncer Parameters

Parameter Name

Value

Description

Edge Type

Either

Assert an IRQ on rising, falling or both (either) edges

Table 28: Debounce_Clock Parameters

Parameter Name Value Description

Frequency 100Hz Clock frequency.

Source HFCLK Source clock, from which this clock is derived.

Divider 480000" Local divider value to obtain desired frequency
from source clock.

Accuracy +- 2% Accuracy of the source clock.

Table 29: SW2 Parameters

Parameter Name Value Description

Type Digital Input Input pin.

Drive Mode Res pull up Resistive pull-up. Reads high when input is not driven
strong.

Initial State 1 Initial value written to the pin’s data register after power-
on reset (POR).

Threshold CMOS Threshold levels that define a logic high level (1) and a
logic low level (0).

Interrupt Both edges Selects whether the pin can generate an interrupt and, if

selected, the interrupt type.

Table 30: SW2_Active Int Parameters

Parameter Name

Value

Description

Interrupt Type

LEVEL

IRQ source is sticky and remains active until firmware
clears the source of the request with an action.

Table 31: SW2_Wakeup_Int Parameters

Parameter Name

Value

Description

! This exceeds the maximum possible divider value (16-bit) for a single clock. The division is obtained by
chaining two clock dividers. The clock APIs that modify the divider value will, as a result, likely not have
the intended result. Avoid using these APIs on this clock or use PSoC Creator to reconfigure the clock.

36 of 52

November 2013

http://www.cypress.com/go/comp_cy_isr

v1.0 BSP for CY8CKIT-042

Parameter Name Value Description

Interrupt Type RISING-EDGE | IRQ is triggered from an edge-detect circuit that
generates a synchronous one-cycle pulse. Firmware is
not required to clear the interrupt.

Timer

The Timer is configured to measure events with a 1ms granularity. The input clock frequency
can be adjusted by software to change the timer resolution. The Timer_Clock is sourced from a
design-wide clock — Clock_1MHz — to enable the local clock APIs to easily change the clock
divider without impacting other clocks in the system.

The Timer is controlled by a combination of firmware-driven signals, via the Timer_Ctl_Reg,
and/or an input pin, Timer_Pin. Start, reload and capture inputs are available. Timer_Pin is
PO[6], which is on header J3_06. Timer_Pin is active high.

The register provides two functions. The upper three bits control the muxes that select the input
sources to the Timer component. Each bit corresponds to one of the inputs; start, reload and
capture. When the register bit is high the Timer_Pin is routed to the associated input. When low,
inputs are driven by software, via the lower three bits.

The Timer is implemented in a hardware block called a TCPWM — Timer/Counter/PWM. A
TCPWM can be configured as a Timer/Counter, PWM or Quadrature Decoder using PSoC
Creator.

Figure 12: Timer Control Register Schematic

Timer_Ctl_Reg
Control Reg

control_O [——— sw_reload
control_1 [———— sw_start
control_2 ———— sw_capture
control_3 —— reload_select
control_4 [—— start_select
control_5 [capture_select

Figure 13: Timer Schematic

sw_reload - 0 »>
Timer_Pin [os}— 1
q Timer
reload_select——— Timer Counter
reload ov]
art un fe
sw_sta ‘up start ccle
] capture
start_select
Timer_Clock[JUL}—> clock
TkHz interrupt [—{_»"| Timer_Int
sw_capture — 0
—eap i
1

capture_select -

This schematic contains the following component instances (click links for details on features
and APIs).

November 2013 37 of 52

BSP for CY8CKIT-042 v1.0

Instance Timer (type: TCPWM v1 0)

Instance Timer_Clock (type: cy_clock v2 10)

o See the chapter on Using the cy clock Component for API information.

Instance Timer_Pin (type: cy pins vl 90)

o See the chapter on Using the cy pins Component for API information.

Instance Timer_Int (type: cy_isr_ vl 70)
o See the chapter on Using the cy_isr Component for APl information.

Table 32: Timer_Clock Parameters

Parameter Name Value Description

Frequency 1kHz Clock frequency.

Source HFCLK Source clock, from which this clock is derived.

Divider 48000 Local divider value to obtain desired frequency from
source clock.

Accuracy +/- 2% Accuracy of the source clock.

Table 33: Timer_Pin Parameters

Parameter Name Value Description

Type Digital Input Input pin.

Drive Mode Res pull dn Resistive pull-down. Reads low when input is not driven
strong.

Initial State 0 Initial value written to the pin’s data register after power-

on reset (POR).

Threshold CMOS Threshold levels that define a logic high level (1) and a
logic low level (0).

Interrupt None Selects whether the pin can generate an interrupt and, if
selected, the interrupt type.

Table 34: Timer_Int Parameters

Parameter Name Value Description

Interrupt Type LEVEL IRQ source is sticky and remains active until firmware
clears the source of the request with an action.

Table 35: Timer APIs

Function Description

Timer_Init() Initialize/Restore default TCPWM configuration

Timer_Enable() Enables the TCPWM. TCPWM will be started if the Start
terminal is not present

38 of 52 November 2013

http://www.cypress.com/go/comp_tcpwm_p4
http://www.cypress.com/go/comp_cy_clock
http://www.cypress.com/go/comp_cy_pins
http://www.cypress.com/go/comp_cy_isr

v1.0

BSP for CY8CKIT-042

Function

Description

Timer_Start()

Initializes the TCPWM with default customizer values when
called the first time and enables the TCPWM. TCPWM will
be started if the Start terminal is not present

Timer_Stop()

Disables the TCPWM

Timer_SetMode()

Sets the operational mode of the TCPWM

Timer_SetPrescaler()

Sets the prescaler value that is applied to the clock input

Timer_TriggerCommand()

Triggers the designated command to occur on the
designated TCPWM instances

Timer_SetOneShot()

Writes the register that controls whether the TCPWM runs
continuously or stops after terminal count is reached

Timer_SetInterruptMode()

Sets the interrupt mask to control which interrupt requests
generate the interrupt signal

Timer_GetlnterruptSourceMasked()

Gets the interrupt requests masked by the interrupt mask

Timer_GetinterruptSource()

Gets the interrupt requests (without masking)

Timer_Clearinterrupt()

Clears the interrupt request

Timer_Setlnterrupt()

Sets a software interrupt request

Timer_WriteCounter()

Writes a new 16 bit counter value directly into the counter
register

Timer_ReadCounter()

Reads the current counter value

Timer_SetCounterMode()

Sets the counter mode

Timer_ReadCapture()

Reads the captured counter value

Timer_ReadCaptureBuf()

Reads the capture buffer register

Timer_WritePeriod()

Writes the 16 bit period register with the new period value

Timer_ReadPeriod()

Reads the 16 bit period register

Timer_SetCaptureMode()

Sets the capture trigger mode

Timer_SetReloadMode()

Sets the reload trigger mode

Timer_SetStartMode()

Sets the start trigger mode

Timer_SetStopMode()

Sets the stop trigger mode

Timer_SetCountMode()

Sets the count trigger mode

Timer_ReadStatus()

Reads the status of the TCPWM

ADC

The ADC is configured with three channels, connected to pins ADCO, ADC1 and ADC3P (plus)
and ADC2M (minus). It can generate an IRQ after every conversion.

e Channel 0 is a single-ended input to pin ADCO (P2[4]) on header J2_09

November 2013 39 of 52

BSP for CY8CKIT-042 v1.0

¢ Channel 1 is a single-ended input to pin ADC1 (P1[0]) on headers J2_17 and J4 07 via a
signal-boosting Opamp

e Channel 2 is a differential input to pins ADC2P and ADC2M
o The positive input is ADC2P (P2[6]) on headers J2_13 and J4_05
o The negative input is ADC2M (P2[7]) on header J2_15

Figure 14: ADC Schematic

ADC
(24}
ADCO [2] ADC SAR Seq
[#{soc sdonel-]
Opamp eocl—{#|ADC_EOC_Int
Opamp
ADC1 L "o .
P 1 SAR
2 12-bit
Vref

ADC2P [z}
ADC2M [z}

This schematic contains the following component instances (click links for details on features
and APIs).
e Instance ADC (type: ADC _SAR SEQ P4 vl 10)

e Instance Opamp (type: OpAmp P4 vl 0)
e Instances ADCO, ADC1, ADC2P and ADC2M (type: cy pins vl 90)
o See the chapter on Using the cy pins Component for API information.

e Instance ADC_EOC_Int (type: cy isr vl 70)

o See the chapter on Using the cy_isr Component for API information.

Table 36: ADC Parameters

Parameter Name Value Description

Sample Rate 5050sps Number of samples taken per second.

Sampling Mode Free Running Controls whether each scan must be triggered by the
SOC terminal or the ADC runs continuously.

Vref Source Vdda/2 Internal reference voltage.

Vref Value 1.65V Actual voltage of Vref source.

Single-Ended Range 0V to 3.3V Measurable range for single-ended channels.

Single-Ended Result signed Format of returned value for all single-ended channels.

Format

Differential Range -1.65V to 1.65V | Measurable range for differential channels.

40 of 52 November 2013

http://www.cypress.com/go/comp_ADC_SAR_SEQ
http://www.cypress.com/go/comp_OpAmp_P4
http://www.cypress.com/go/comp_cy_pins
http://www.cypress.com/go/comp_cy_isr

v1.0

BSP for CY8CKIT-042

Parameter Name Value Description

Differential Result Format | signed Format of returned value for all differential channels.
Samples Averaged 8 Number of samples averaged for each conversion.
Interrupt High Limit Ox7FF Upper limit for Compare Mode.

Interrupt High Limit 0x0 Lower limit for Compare Mode.

Interrupt Compare Mode

(Result < Low
Limit) or (High
Limit <= Result)

Limit condition that will trigger a maskable range detect
interrupt.

Table 37: ADC APIs

Function

Description

ADC_Start()

Performs all required initialization for this component and
enables the power. The power will be set to the appropriate
power based on the clock frequency.

ADC_Stop()

This function stops ADC conversions and puts the ADC into
its lowest power mode.

ADC_StartConvert()

For free running mode, this API starts the conversion
process and it runs continuously. In a triggered mode, this
routine triggers every conversion.

ADC_StopConvert()

Forces the ADC to stop conversions. If a conversion is
currently executing, that conversion will complete, but no
further conversions will occur.

ADC_IRQ_Enable()

Enables interrupts to occur at the end of a conversion.
Global interrupts must also be enabled for the ADC
interrupts to occur.

ADC_IRQ_Disable()

Disables interrupts at the end of a conversion.

ADC_IseEndConversion()

Immediately returns the status of the conversion or does not
return (blocking) until the conversion completes, depending
on the retMode parameter.

ADC_GetResult16()

Gets the data available in the SAR result register.

ADC_SetChanMask()

Sets the channel enable mask. Sets which channels that
will be scanned.

ADC_Enablelnjection()

Enables the injection channel for the next scan only.

ADC_SetLowLimit()

This parameter sets the low limit for a limit compare.

ADC_SetHighLimit()

This parameter sets the high limit for a limit compare.

ADC_SetLimitMask()

Sets which channels may cause a limit condition interrupt.

ADC_SetSatMask()

Sets which channels may cause a saturation event
interrupt.

ADC_SetOffset()

Sets the offset of the ADC channel.

November 2013 41 of 52

BSP for CY8CKIT-042 v1.0

Function Description

ADC_SetGain() Sets the gain in counts per 10 volt for the ADC channel.

ADC_CountsTo_Volts() Converts the ADC output to volts as a floating point number.

ADC_CountsTo_mVolts() Converts the ADC output to millivolts.

ADC_CountsTo_uVolts() Converts the ADC output to microvolts.

ADC_Sleep() Stops the ADC operation and saves the configuration
registers and component enable state.

ADC_Wakeup() Restores the component enable state and configuration
registers.

ADC_SaveConfig() Save the current configuration of ADC non-retention
registers.

ADC_RestoreConfig() Restores the configuration of ADC non-retention registers.

Table 38: Opamp Parameters

Parameter Name Value Description

Mode Follower Selects the 2-input (Opamp) or 1-input (Follower)
configuration. In follower mode, the inverting input is
internally connected to the output to create a voltage
follower.

Power High Selects the operating power level: High Power, Medium
Power, or Low Power. Higher operating current
increases the Opamp bandwidth.

Output Current 1mA Selects output mode: 1mA or 10mA.

Compensation High Stability Compensation is used to prevent unwanted oscillations
in the output

Table 39: Opamp APIs

Function Description

Opamp_Init() Initializes or restores the component according to the
customizer Configure dialog settings.

Opamp_Enable() Activates the hardware and begins component operation.

Opamp_Start() Performs all of the required initialization for the component
and enables power to the block.

Opamp_Stop() Turns off the Opamp block.

Opamp_SetPower() Sets the drive power to one of three settings; LOWPOWER,
MEDPOWER, HIGHPOWER.

Opamp_PumpControl() Turn the boost pump on or off.

Opamp_Sleep() This is the preferred API to prepare the component for

42 of 52 November 2013

v1.0 BSP for CY8CKIT-042

Function Description
sleep.
Opamp_Wakeup() This is the preferred API to restore the component to the
state when Opamp_Sleep() was called.
Opamp_SaveConfig() Saves the configuration of the component.
Opamp_RestoreConfig() Restores the configuration of the component.

Table 40: ADCO, ADC1, ADC2P and ADC2M Parameters

Parameter Name Value Description
Type Analog Analog pin.
Drive Mode HiZ Analog High Impedance - Analog.

Table 41: ADC_EOC_Int Parameters

Parameter Name Value Description

Interrupt Type RISING-EDGE | IRQ source is sticky and remains active until firmware
clears the source of the request with an action.

Comparator

The Comparator simply compares the input voltages and stores the result in a register. It is
configured to generate an interrupt — LPComp_Active_Int — when there is a change in the
compare value.

e The positive input voltage is LPCompP (PO[0]) on headers J2_13 and J4 05
e The negative input voltage is LPCompM (PO[1]) on header J2_15

The GlobalSignal component remains active when the device is in a sleep mode. It can assert
the interrupt — LPComp_Wakeup_Int — from both the Sleep and DeepSleep states.

Figure 15: Comparator Schematic

LPComp
LPComp
LPCompP [-ﬂl
LPCompM [}
interrupt LPComp_Active_lInt

GlobalSignal
Global Signal

LPComplnt LPComp_Wakeup_lInt

This schematic contains the following component instances (click links for details on features
and APIs).
e Instance LPComp (type: LPComp P4 vl 0)

November 2013 43 of 52

http://www.cypress.com/go/comp_LPComp_p4

BSP for CY8CKIT-042

v1.0

¢ Instance GlobalSignal (type: cy gsref v2 0)

¢ Instances LPCompM and LPCompP (type: cy pins v1 90)

o See the chapter on Using the cy pins Component for API information.

e Instances LPComp_Active_Int and LPComp_Wakeup_lInt (type: cy isr vl 70)

o See the chapter on Using the cy_isr Component for APl information.

Table 42: LPComp Parameters

Parameter Name | Value Description

DigitalFilter Disable Determines if the output is synced to the system
clock

Hysteresis Enable Enables the output hysteresis

Interrupt Both edges Selects the detection setting for the output and the
interrupt

Speed Slow/Ultra low power Component power setting. This setting is required
for sleep mode wakeup.

Table 43: LPComp APIs

Function

Description

LPComp_Start()

Performs all of the required initialization for the component
and enables power to the block.

LPComp_Init()

Initializes or restores the component according to the
customizer settings.

LPComp_Enable()

Activates the hardware and begins component operation.

LPComp_Stop()

Turns off the LP Comparator block.

LPComp_GetCompare()

This function returns a nonzero value when the voltage
connected to the positive input is greater than the negative
input voltage.

LPComp_SetSpeed()

Sets the power and speed to one of three settings.

LPComp_SetinterruptMode()

Sets the interrupt edge detect mode.

LPComp_GetinterruptSource()

Gets the interrupt requests.

LPComp_Clearinterrupt()

Clears the interrupt request.

LPComp_Setinterrupt()

Sets a software interrupt request.

LPComp_SetHysteresis()

Enables or disables the hysteresis setting.

LPComp_SetFilter()

Enables or disables the digital filter setting.

LPComp_ZeroCal()

Performs custom calibration of the input offset to minimize
error for a specific set of conditions.

LPComp_LoadTrim()

Writes a value into the comparator offset trim register.

44 of 52

November 2013

http://www.cypress.com/go/comp_cy_gsref
http://www.cypress.com/go/comp_cy_pins
http://www.cypress.com/go/comp_cy_isr

v1.0 BSP for CY8CKIT-042

Table 44: GlobalSignal Parameters

Parameter Name Value Description
Signal LPComplint Selected global signal. LPComplnt triggers when any
enabled low power comparator generates an IRQ.

Table 45: LPComp_Active_Int Parameters

Parameter Name Value Description

Interrupt Type RISING-EDGE | IRQ source is sticky and remains active until firmware
clears the source of the request with an action.

Table 46: LPComp_Wakeup_Int Parameters

Parameter Name Value Description

Interrupt Type LEVEL IRQ source is sticky and remains active until firmware
clears the source of the request with an action.

IDAC

This component is only available in the IDAC-enabled design. If CapSense is present in the
system, the IDAC is disabled.

The IDAC can source current to the IDAC_out pin. The maximum current is 612uA and the
resolution is 8-bit (2.4pA/Dbit).

Figure 16: IDAC Schematic

IDAC
IDAC

@ IDAC_out

8-bit

This schematic contains the following component instances (click links for details on features

and APIs).
¢ Instance IDAC (type: IDAC P4 vl 0)

e Instance IDAC_out (type: cy pins vl 90)
o See the chapter on Using the cy pins Component for API information.

Table 47: IDAC Parameters

Parameter Name Value Description
Type Source Mode of operation. Negative/Sink (default) or
Positive/Source.

November 2013 45 of 52

http://www.cypress.com/go/comp_IDAC_p4
http://www.cypress.com/go/comp_cy_pins

BSP for CY8CKIT-042 v1.0

Parameter Name Value Description

Range High Output range of the IDAC. Can be either 0-306uUA (Low)
or 0-612uA (High).

Resolution 8-bit Number of bits in the IDAC. Current granularity or
1.2uA/bit (low range) or 2.4uA/bit (high range).

Value 0 Initial output value of the IDAC.

Table 48: IDAC APIs

Function

Description

IDAC_Start()

Performs all of the required initialization for the component
and enables power to the block.

IDAC_Stop()

Turn off the IDAC block.

IDAC_Init()

Initializes or restores the component according to the
customizer Configure dialog settings.

IDAC_Enable()

Activates the hardware and begins component operation.

IDAC_SetValue(uint32 value)

Sets the DAC’s output value.

IDAC_Sleep()

This is the preferred API to prepare the component for
sleep.

IDAC_Wakeup()

This is the preferred API to restore the component to the
state when IDAC_Sleep() was called.

IDAC_SaveConfig()

Saves the configuration of the component.

IDAC_RestoreConfig()

Restores the configuration of the component.

Table 49: IDAC_out Parameters

Parameter Name Value Description

Type Analog Analog pin.

Drive Mode HiZ Analog High Impedance - Analog.
CapSense

This component is only available in the CapSense-enabled design. If the IDAC is present in the

system, CapSense is disabled.

CapSense is configured to support the 5-element slider on the Kkit.

CapSense Capsense Configuration
CapSense CSD 5-sensor slider
Cmod (modulation capacitor)

CapSense Connections
Auto (SmartSense) Sensor 0 - P1.1
Sensor 1-P1.2
Sensor 2 -P1.3
Sensor 3-P1.4
Sensor 4 - P1.5
Cmod - P4.2

46 of 52

November 2013

v1.0

BSP for CY8CKIT-042

This schematic contains the following component instances (click links for details on features

and APIs).

e Instance CapSense (type: CapSense CSD P4 vl 11)

Table 50: CapSense Parameters

Parameter Name Value

Description

SensorNumber 5

Total sensors count

Table 51. CapSense APIs

Function

Description

CapSense_Start()

Preferred method to start the component. Initializes
registers and enables active mode power template bits of
the subcomponents used within CapSense.

CapSense_Stop()

Disables component interrupts, and calls
CapSense_ClearSensors() to reset all sensors to an
inactive state.

CapSense_Sleep()

Prepares the component for the device entering a low-
power mode. Disables Active mode power template bits of
the sub components used within CapSense, saves
nonretention registers, and resets all sensors to an inactive
state.

CapSense_Wakeup()

Restores CapSense configuration and nonretention register
values after the device wake from a low power mode sleep
mode.

CapSense_Init()

Initializes the default CapSense configuration provided with
the customizer.

CapSense_Enable()

Enables the Active mode power template bits of the
subcomponents used within CapSense.

CapSense_SaveConfig()

Saves the configuration of CapSense.

CapSense_RestoreConfig()

Restores CapSense configuration.

CapSense_ScanSensor()

Sets scan settings and starts scanning a sensor or group of
combined sensors.

CapSense_ScanEnabledWidgets()

The preferred scanning method. Scans all of the enabled
widgets.

CapSense_IsBusy()

Returns the status of sensor scanning.

CapSense_SetScanSlotSettings()

Sets the scan settings of the selected scan slot (sensor).

CapSense_ClearSensors()

Resets all sensors to the nonsampling state.

CapSense_EnableSensor()

Configures the selected sensor to be scanned during the
next scanning cycle.

CapSense_DisableSensor()

Disables the selected sensor so it is not scanned in the next
scanning cycle.

November 2013 47 of 52

http://www.cypress.com/go/comp_capsense_csd_p4

BSP for CY8CKIT-042

v1.0

CapSense_ReadSensorRaw()

Returns sensor raw data from the CapSense_SensorResult]
] array.

CapSense_InitializeSensorBaseline()

Loads the CapSense_sensorBaseline[sensor] array
element with an initial value by scanning the selected
sensor.

CapSense_InitializeEnabledBaselines()

Loads the CapSense_sensorBaseline[] array with initial
values by scanning enabled sensors only.

This function is available only for two-channel designs.

CapSense_InitializeAllBaselines()

Loads the CapSense_sensorBaseline[] array with initial
values by scanning all sensors.

CapSense_UpdateSensorBaseline()

The historical count value, calculated independently for
each sensor, is called the sensor's baseline. This baseline
updated uses a low-pass filter with k = 256.

CapSense_UpdateEnabledBaselines()

Checks the CapSense_sensorEnableMask [Jarray and calls
the CapSense_UpdateSensorBaseline() function to update
the baselines for enabled sensors.

CapSense_EnableWidget()

Enables all sensor elements in a widget for the scanning
process.

CapSense_DisableWidget()

Disables all sensor elements in a widget from the scanning
process.

CapSense_ChecklsWidgetActive()

Compares the selected of widget to the CapSense_Signal[]
array to determine if it has a finger press.

CapSense_ChecklsAnyWidgetActive()

Uses the CapSense_CheckIsWidgetActive() function to find
if any widget of the CapSense CSD component is in active
state.

CapSense_GetCentroidPos()

Checks the CapSense_sensorSignal[] array for a finger
press in a linear slider and returns the position.

CapSense_GetRadialCentroidPos()

Checks the CapSense_sensorSignal[] array for a finger
press in a radial slider widget and returns the position.

CapSense_GetTouchCentroidPos()

If a finger is present, this function calculates the X and Y
position of the finger by calculating the centroids within the
touchpad.

CapSense_GetMatrixButtonPos()

If a finger is present, this function calculates the row and
column position of the finger on the matrix buttons.

Software Pins

This schematic shows the pinouts for the three headers that are accessible from the PSoC 4

device; J2, J3, and J4.

The pins for all the components discussed above are labeled here for convenience. Note that
some pins are routed to multiple headers.

The cy_pins component instances, named “JX_YY”, are software pins. By default they are
configured as digital outputs (Strong drive) but can be re-configured as inputs from software.

48 of 52

November 2013

v1.0 BSP for CY8CKIT-042

Figure 17: Software Pin Schematic - CapSense-enabled

1 JX_YY general-purpose /O pins are J3 Header Connections t
configured as Digital Output, Strong Drive
UART:x

n UART:rx

B 5o
GND

n Timer_Pin
12C:sda

B 2c:sc

H, J3 03
—a] J3_02

ADC2P

I Signals marked with an asterisk are
available on multiple pins

J2 Header Connections t

J2_01 [l PWM_2_ out

PWM_1_out PWM_3_out

J2_05 [n vdd

J4 Header Connections t

n ADC2M
ADC1 $

J2_07 [o+— Reserved e
ADCO E Reserved ;,::pof
J2_11 [wf+— Reserved nH‘M 04
LPCompP % GND Swz -
LPCompM Reserved 41\]4 02
ADC1 t Reserved H, J4_01

November 2013 49 of 52

BSP for CY8CKIT-042

v1.0

Figure 18: Software Pin Schematic — IDAC-enabled

1 JX_YY general-purpose /O pins are
configured as Digital Output, Strong Drive

I Signals marked with an asterisk are
available on multiple pins

J2 Header Connections t

IDAC_out PWM_2_out

PWM_1_out PWM_3_out
J2_05 [n Vdd
J2_07 s} nﬂﬁ J2_08
roco [RRRRY 9210
v2_ 11— KNI v2-12
LPCompP % GND
LPCompM Hv J2_16
ADC1 H@ J2 18

J3 Header Connections 1

UART:tx

n UART:rx

n — 1w J3_08
GND

n Timer_Pin
12C:sda

n 12C:scl

H, J3 03
—a] J3_02

ADC2P

J4 Header Connections t

n ADC2M
ADC1 $

B4o0e
LPCompP
n — T J4_04
SW2

—o] J4_02
H, J4_01

This schematic contains the following component instances (click links for details on features

and APIs).

e Instance J2_**, J3_** and J4_** (type: cy_pins vl 90)

o See the chapter on Using the cy pins Component for API information.

Table 52: J2_**, J3 ** and J4_** Parameters

Parameter Name Value Description
Type Digital Output Output pin.
Drive Mode Strong Strong drive.

50 of 52

November 2013

http://www.cypress.com/go/comp_cy_pins

v1.0 BSP for CY8CKIT-042

Other Resources

The following documents contain important information on Cypress software APls that might be
relevant to this design:

e Standard Types and Defines chapter in the System Reference Guide

o Software base types

o Hardware register types

o Compiler defines

o Cypress API return codes

o Interrupt types and macros
o Registers

o The full PSoC 4 register map is covered in the PSoC 4 Reqisters Technical
Reference Manual

o Register Access chapter in the System Reference Guide
o CY_GET API routines
o CY_SET API routines

e System Functions chapter in the System Reference Guide

o General API routines

o CyDelay API routines

o CyVd Voltage Detect API routines
o Power Management

o Power Supply and Monitoring chapter in the PSoC 4 Technical Reference Manual

o Low Power Modes chapter in the PSoC 4 Technical Reference Manual

o Power Management chapter in the System Reference Guide

= CyPm API routines
e Watchdog Timer chapter in the System Reference Guide
o CyWdt API routines

November 2013 51 of 52

http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/psoc4_trm_registers
http://www.cypress.com/go/psoc4_trm_registers
http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/psoc4_trm
http://www.cypress.com/go/psoc4_trm
http://www.cypress.com/go/comp_cy_boot
http://www.cypress.com/go/comp_cy_boot

BSP for CY8CKIT-042 v1.0

Revision History

Version Changes

1.0 New document

52 of 52 November 2013

	Table of Contents
	Chapters
	Tables
	Figures

	Supported Design Configurations
	Device Family Overview
	Resources
	System Settings
	Configuration
	Debug
	Operating Conditions

	Pins
	Device Pin Functions
	Using the cy_pins Component

	Clocks
	System Clocks
	Local Clocks
	Using the cy_clock Component

	Interrupts
	Global Interrupt Control
	Using the cy_isr Component

	Flash Memory
	Design Contents
	UART
	I2C
	PWMs
	Debounced Switch
	Timer
	ADC
	Comparator
	IDAC
	CapSense
	Software Pins

	Other Resources
	Revision History

