

 User Guide for FreeRTOS on the
CY8CKIT-042 (PSoC 4 Pioneer Kit)

v1.0

Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810

Phone (Intl): 408.943.2600

http://www.cypress.com

v1.0 FreeRTOS on CY8CKIT-042 User Guide

Page 2 of 13 March 2014

Copyrights

Copyright © 2014 Cypress Semiconductor Corporation. All rights reserved.

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Designer is a

trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced

herein are the property of their respective owners.

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license

under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system

conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips

Semiconductors has a new trade name, NXP Semiconductors.

The information in this document is subject to change without notice and should not be construed as a

commitment by Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for

any errors that may appear in this document. No part of this document may be copied, or reproduced for

commercial use, in any form or by any means without the prior written consent of Cypress.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS

MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to

the materials described herein. Cypress does not assume any liability arising out of the application or use of any

product or circuit described herein. Cypress does not authorize its products for use as critical components in life-

support systems where a malfunction or failure may reasonably be expected to result in significant injury to the

user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer

assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress

believes that its family of PSoC products is one of the most secure families of its kind on the market today,

regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code

protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither

Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection

does not mean that we are guaranteeing the product as “unbreakable.”

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is

constantly evolving. We at Cypress are committed to continuously improving the code protection features of our

products.

FreeRTOS on CY8CKIT-042 User Guide v1.0

 March 2014 Page 3 of 13

Table of Contents

Chapters

Table of Contents .. 3

Chapters .. 3

Figures... 3

CY8CKIT-042 Kit ... 5

Hardware Tools ... 5

Software Tools .. 5

Compiler Toolchain .. 6

CY8CKIT-042-GNU.. 6

CY8CKIT-042-MDK ... 6

Using PSoC Creator .. 6

Board Support Package .. 6

Board Setup ... 7

Modifying the BSP ... 7

Example – “Demo” .. 7

Running the Demo ... 7

Theory of Operation ... 7

SW2_ISR... 7

CapSense_Task .. 8

LED_Task .. 8

Example – “NewDesign” .. 8

Adding FreeRTOS to a PSoC Creator Project ... 9

Getting the FreeRTOS Software .. 9

Add FreeRTOS Files .. 9

Build Settings ..10

Stack and Heap Settings ..10

Initialization Code ...11

RTOS Configuration ..11

Workspace Explorer with FreeRTOS ..12

Revision History ...13

Figures

Figure 1: PSoC 4 Pioneer Kit ... 5

Figure 2: UART Connections for UART-USB Bridge ... 7

Figure 3: State transitions for Demo project ... 8

Figure 4: State transitions for NewDesign project .. 8

v1.0 FreeRTOS on CY8CKIT-042 User Guide

Page 4 of 13 March 2014

FreeRTOS on CY8CKIT-042 User Guide v1.0

 March 2014 Page 5 of 13

CY8CKIT-042 Kit
These example projects are designed to run on the CY8CKIT-042 (PSoC 4 Pioneer Kit) from

Cypress Semiconductor. A full description of the kit, along with more example programs and

ordering information, can be found at http://www.cypress.com/go/cy8ckit-042.

This kit is a development platform for the PSoC 4 family of devices. It includes a

CY8C4245AXI-483 part with 32kB on-chip flash memory and 4kB SRAM. The kit hardware

provides the following features.

 Arduino™ shield-compatible headers

 Digilent® Pmod™ peripheral module header

 5-element CapSense™ slider

 RGB LED

 Power and status LEDs

 Reset and user push-button switches

 Multiple power supply options: JTAG/SWD header, USB, external power via LDO, or
Arduino shield

 3.3V or 5.0V operation (jumper)

 JTAG/SWD debug connector 10 pin 0.1”

 On-board PSoC 5LP for serial I/O (I2C or UART) bridge to PC

Figure 1: PSoC 4 Pioneer Kit

Hardware Tools
Programming and debug is available through the following hardware tools.

 PSoC Creator with the on-board debug connection (USB)

 PSoC Creator with the Cypress MiniProg3 kit

Software Tools
The applications are compatible with the following software IDEs.

 PSoC Creator 3.0 and newer

Full source code is provided for all projects and you are encouraged to modify the designs to

learn and experiment with FreeRTOS on a PSoC 4 device.

http://www.cypress.com/go/cy8ckit-042

v1.0 FreeRTOS on CY8CKIT-042 User Guide

Page 6 of 13 March 2014

Compiler Toolchain

This document is included in two downloadable images – CY8CKIT-042-GNU and CY8CKIT-

042-MDK, which use the ARM GNU GCC 4.7.3 and ARM’s Microcontroller Developers Kit

compiler toolchain respectively.

CY8CKIT-042-GNU

In this package the ARM GNU GCC 4.7.3 is used to build all projects. This compiler is
automatically installed with PSoC Creator 3.0.

CY8CKIT-042-MDK

In this package the Microcontroller Developers Kit (MDK) compiler from ARM Ltd. is used to

build all projects. This compiler not included in the PSoC Creator product but is available for

download at https://www.keil.com/demo/eval/arm.htm

Using PSoC Creator

To explore the applications in PSoC Creator open the workspace file “CY8CKIT-042-

GCC.cywsp” or “CY8CKIT-042-MDK.cywsp”. This workspace includes the following projects.

 Demo.cyprj

 NewDesign.cyprj

Programming/debugging is provided through either the on-board USB connector J10 or the

Cypress MiniProg3 debug adapter (not provided in the CY8CKIT-042 kit) on header J6.

Third-party debug adapters cannot be used with PSoC Creator 3.0.

Board Support Package
PSoC 4 is a unique device that combines an ARM Cortex-M0 CPU with arrays of

configurable analog and digital functionality. This allows PSoC to be programmed with an

amazing range (and amount) of peripheral functionality.

These examples include a generic configuration of the PSoC device that supports the

following functions and interfaces.

 3-channel SAR (successive approximation) ADC (12-bit)

 Analog Comparator supporting low-power wakeup

 General purpose current DAC (8-bit) [optional - disabled]

 5-element CapSense slider [optional - enabled]

 I2C supporting low-power wakeup

 UART

 3x PWM (16-bit)

 General-purpose Timer (16-bit)

 Hardware-debounced switch supporting low-power wakeup

All of these functions are supported by a rich set of APIs, which are described in the

accompanying Board Support Package (BSP) document.

Note: the PSoC project used in these examples can be quickly re-configured (in PSoC

Creator) to swap between an IDAC- and a CapSense-supporting setup. This is described

more fully in the accompanying BSP document. The projects ship with the DAC disabled and

CapSense enabled.

FreeRTOS on CY8CKIT-042 User Guide v1.0

 March 2014 Page 7 of 13

Board Setup

In order to see the UART output, make the following hardware connections.

 Attach jumper wires from J3_09 to J8_10 and J3_10 to J8_09, as shown below.

Figure 2: UART Connections for UART-USB Bridge

Modifying the BSP

The BSP for PSoC devices is generated directly from the configuration of the device. When a

design is built in PSoC Creator, the APIs to interface with the peripherals are generated by

the tool. For example, if you create a design that uses an ADC, the APIs to start, stop and

read the ADC conversion results are automatically added to the project. As a result it is a

simple task to extend the BSP provided with these projects or to create your own from

scratch.

Launch PSoC Creator and open the NewDesign project. In the NewDesign.cycsh file you will

see a number of pages of peripheral functions, all of which are discussed in the BSP

document. Feel free to add new functions or change how the existing design works to suit

your needs. A simple re-build is all that is needed to re-generate the APIs and create your

own, custom BSP.

Example – “Demo”
This is a great place to start learning about FreeRTOS and PSoC. The demo shows off some

of the features of PSoC and the kit and how they can be managed and used in a multi-

tasking application. In this design, a CapSense task monitors user interaction with the slider

and an LED task updates the color and brightness of the RGB LED.

Running the Demo

Download the demo and play with it before diving into the code. The program lets you vary

the color and brightness of the LED. The CapSense slider varies the brightness, by

modifying the duty cycle of a PWM. The color can be rotated through red, green, blue and

white by pressing the user button (SW2).

Theory of Operation

The Demo project uses a message queue and a task event. The queue is used to share

CapSense input with the LED task. The task event is signaled from an ISR when SW2 is

pressed. The application comprises the following tasks.

CapSense_Task – periodically reads the CapSense input and posts it to the queue

LED_Task – varies the color and brightness of the LEDs

SW2_ISR

This interrupt service routine runs when the SW2 button is pressed or released. It posts to

the LED_Task event on a press (releases are ignored).

v1.0 FreeRTOS on CY8CKIT-042 User Guide

Page 8 of 13 March 2014

CapSense_Task

Capsense_Task scans the slider on the board and, if activity is detected, the slider position is

posted to the queue. Tasks that require input from CapSense simply ask for data from the

queue. The task executes every 10ms, which allows other tasks plenty of time to execute

(without the user noticing that the “application code” is not running) and is fast enough to be

very responsive to user input on the buttons and slider.

LED_Task

This task uses the function update_PWMs() to control the brightness and color of the LED.

After starting the PWMs, the task enters a loop that makes non-blocking calls to

xEventGroupWaitBits () and xQueueReceive (). The former reports button presses, which

LED_Task uses to choose the output color. The latter reports activity on the CapSense

slider, which LED_Task uses to vary the compare value of the PWMs on the LEDs.

Figure 3: State transitions for Demo project

Example – “NewDesign”
This is a near-empty project that is ready for you to start developing your own applications. It

includes all the BSP files and start-up code for the RTOS. The demo code is just a single

task (“Main_Task”) that blinks an LED every second. Replace our two-line main-loop with

more interesting code of your own to get started today!

Figure 4: State transitions for NewDesign project

FreeRTOS on CY8CKIT-042 User Guide v1.0

 March 2014 Page 9 of 13

Adding FreeRTOS to a PSoC Creator Project
The instructions above all assume the user starts from a PSoC Creator project with the

RTOS already set up. What if you wish to add an RTOS to an existing PSoC design? Follow

these instructions to add FreeRTOS to a project in PSoC Creator. Note that you can use

either MDK or GCC compilers, PSoC 4 or PSoC 5LP, and DEBUG or RELEASE

configurations.

Getting the FreeRTOS Software

These instructions apply to FreeRTOS v8.0.0. It can be downloaded from here:

http://sourceforge.net/projects/freertos/

The downloaded file is an executable ZIP – extract it to a convenient location “near” your

project directory.

Note that the FreeRTOS author(s) have done an excellent job of separating user and OS

files in their distribution. Also, they keep device-specifics (like communications drivers and

LEDs) to a minimum. As a result the “Source” directory in the installed SW contains all you

need to get FreeRTOS working (plus the configuration file discussed below) and there should

never be a need to modify those files. Indeed, if disk space is an issue, you might choose to

delete unnecessary compiler and architecture support.

Instructions on writing applications can be found here: http://www.freertos.org/RTOS.html

Add FreeRTOS Files

The following are guidelines, not hard requirements. You do need to add the source files to

the project or they will not build but include files are found through the build settings, so they

are optional. Cypress recommends adding everything, as described, so you can see all the

files (and learning about the OS becomes easier). You may also safely modify the structure

of the folders to suit your taste.

1. Create a “FreeRTOS” folder

 Add the C source files from FreeRTOS\Source

o croutine.c

o event_groups.c

o list.c

o queue.c

o tasks.c

o timers.c

2. Create an “include” folder under ”FreeRTOS”

 Add the C header files from FreeRTOS\Source\include

o croutine.h

o event_groups.h

o FreeRTOS.h

http://sourceforge.net/projects/freertos/
http://www.freertos.org/RTOS.html

v1.0 FreeRTOS on CY8CKIT-042 User Guide

Page 10 of 13 March 2014

o list.h

o mpu_wrappers.h

o portable.h

o projdefs.h

o queue.h

o semphr.h

o StackMacros.h

o task.h

o timers.h

3. Create a “portable” folder under ”FreeRTOS”

4. Create a “MemMang” folder under “portable”

 Add “heap_1.c” file1 from FreeRTOS\Source\MemMang

5. Create a compiler-architecture2 (e.g. “GCC-CM0”) folder under portable

 Add the C source and header files from FreeRTOS\compiler3\architecture4

o port.c

o portmacro.h

Build Settings

6. Add the following directories to the compiler include path (use the appropriate

compiler and architecture choices for your project)

 <relative path>\FreeRTOS\Source\include

 <relative path>\FreeRTOS\Source\portable\GCC\ARM_CM0

Stack and Heap Settings

FreeRTOS defines its own heap and allocates task stacks from that. As a result it is usually

best to reduce the stack and heap settings in the PSoC Creator project. The stack is only

used until the RTOS starts (100 bytes is usually sufficient stack) and the heap is typically

unnecessary.

7. Set the Stack size to 100 bytes in the CYDWR file

8. Set the Heap size to 0 bytes in the CYDWR file

1
 There are 4 heap_?.c files. Each offers increasingly sophisticated support for memory allocation. For

a simple demo the heap_1.c file is adequate, but note that it does not support the reuse of heap
memory after the deletion of tasks or resources.

2
 The port of FreeRTOS can support GCC or the MDK compiler as well as PSoC 4 and PSoC 5LP. It

is recommended to use the following folder names: GCC-CM0, GCC-CM3, MDK-CM0 and MDK-CM3.
Note that the MDK files are actually in the RVDS directory.

3
 The compiler directories are “GCC” and “RVDS” (for the MDK compiler).

4
The architecture directories are “ARM-CM0” and “ARM-CM3”.

FreeRTOS on CY8CKIT-042 User Guide v1.0

 March 2014 Page 11 of 13

Initialization Code

In the main() function – or any other file / function that runs before you start the OS with

vTaskStartScheduler() – you need to add some initialization code.

9. Add a handler function for malloc fails (heap full)

void vApplicationMallocFailedHook(void)

{

 /* The heap space has been exceeded. */

 taskDISABLE_INTERRUPTS();

 while(1)

 {

 /* Do nothing - this is a placeholder for a breakpoint */

 }

}

10. Add a handler function for stack overflow

void vApplicationStackOverflowHook(xTaskHandle pxTask, signed char

*pcTaskName)

{

 /* The stack space has been exceeded for a task */

 taskDISABLE_INTERRUPTS();

 while(1)

 {

 /* Do nothing - this is a placeholder for a breakpoint */

 }

}

11. Add defines and declarations for the OS exception Handlers

/* Declaration of NVIC base vector for FreeRTOS exception handling */

#define CORTEX_INTERRUPT_BASE (16)

/* Declarations of the exception handlers for FreeRTOS */

extern void xPortPendSVHandler(void);

extern void xPortSysTickHandler(void);

extern void vPortSVCHandler(void);

12. Install the exception handlers

 /* Handler for Cortex Supervisor Call (SVC, formerly SWI) - address 11 */

 CyIntSetSysVector(CORTEX_INTERRUPT_BASE + SVCall_IRQn,

 (cyisraddress)vPortSVCHandler);

 /* Handler for Cortex PendSV Call - address 14 */

 CyIntSetSysVector(CORTEX_INTERRUPT_BASE + PendSV_IRQn,

 (cyisraddress)xPortPendSVHandler);

 /* Handler for Cortex SYSTICK - address 15 */

 CyIntSetSysVector(CORTEX_INTERRUPT_BASE + SysTick_IRQn,

 (cyisraddress)xPortSysTickHandler);

RTOS Configuration

The configuration of the RTOS is handled from a single header file that, unlike all other

FreeRTOS files, is unique to the project (so you are free to modify it to your project’s needs).

13. Add (or create) the attached FreeRTOSConfig.h file to the project under Header Files

v1.0 FreeRTOS on CY8CKIT-042 User Guide

Page 12 of 13 March 2014

Workspace Explorer with FreeRTOS

After the above steps your project should look a lot like this and be ready for you to launch

the RTOS from main() by creating tasks and calling vTaskStartScheduler().

FreeRTOS on CY8CKIT-042 User Guide v1.0

 March 2014 Page 13 of 13

Revision History

Version Changes Reason for Changes / Impact

1.0 New document Initial release

Note: the version number refers to the version of the demo package itself (the BSP, RTOS

port code and applications). Letter-level revisions – e.g. from 1.0 to 1.0a – are document-only

changes.

	Table of Contents
	Chapters
	Figures

	CY8CKIT-042 Kit
	Hardware Tools
	Software Tools
	Compiler Toolchain
	CY8CKIT-042-GNU
	CY8CKIT-042-MDK

	Using PSoC Creator

	Board Support Package
	Board Setup
	Modifying the BSP

	Example – “Demo”
	Running the Demo
	Theory of Operation
	SW2_ISR
	CapSense_Task
	LED_Task

	Example – “NewDesign”
	Adding FreeRTOS to a PSoC Creator Project
	Getting the FreeRTOS Software
	Add FreeRTOS Files
	Build Settings
	Stack and Heap Settings
	Initialization Code
	RTOS Configuration
	Workspace Explorer with FreeRTOS

	Revision History

